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Abstract: Due to the nonholonomic nature of the Unicycle Mobile Robot (UMR) kinematics,
the regulation and tracking problems are typically addressed separately, often requiring a
unifying time–varying or switched control scheme to handle both tasks simultaneously. In this
result, we introduce a time–invariant controller design capable of solving simultaneously the
tracking and regulation problems, for the UMR, ensuring the convergence of the error vector to
the origin in a finite time. The controller design is based on the unit vector control approach
and a transformation to the Heisenberg system, which is an equivalent diffeomorphic system to
the kinematics of the UMR.
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1. INTRODUCCIÓN

Los robots móviles de tipo uniciclo (UMRs, por sus siglas
en inglés) han atráıdo una atención significativa durante
la última década, principalmente debido a su capacidad
para moverse libremente entre puntos y su amplia gama
de aplicaciones (véase, por ejemplo, Zhang et al. (2022),
Khaledyan et al. (2015) y Zhang y Liu (2014)).

Para este tipo de robot móvil, es común considerar el mo-
delo cinemático debido a las restricciones en el acceso a las
señales de voltaje/corriente de los motores de las ruedas.
Un desaf́ıo importante en el diseño de controladores para
estos sistemas surge del hecho de que el modelo cinemático
de los UMR no cumple con las condiciones necesarias de
Brockett para la estabilización mediante retroalimentación
suave de estado (Brockett (1983)), como se señala en
Duleba et al. (2012). En consecuencia, los controladores
no suaves o dependientes del tiempo se vuelven esenciales
para esta clase de sistemas robóticos móviles. Además, es
importante destacar que el modelo cinemático del UMR es
difeomorfo al sistema de Heisenberg, lo que permite aplicar
controladores diseñados originalmente para este sistema y
resolver aśı el problema de regulación de los UMR.

El sistema de Heisenberg, también conocido como integra-
dor de Brockett o integrador no holónomo, es un sistema
no lineal cuyos campos vectoriales generan el álgebra de
Heisenberg (véase, por ejemplo, Bloch (2003) y Vershik
y Gershkovich (1988)). Este sistema es un modelo pro-
tot́ıpico no holónomo para muchas representaciones ma-
temáticas de sistemas f́ısicos, incluyendo robots móviles
uniciclo. Por esta razón, el sistema de Heisenberg y su
forma encadenada han sido ampliamente utilizados como
referencia para el diseño de controladores y el análisis
de estabilidad de robots móviles no holónomos (véase,
por ejemplo, Murray et al. (1994) y Marchand y Alamir
(2003)).

Resultados recientes y notables relacionados con el pro-
blema de estabilización de sistemas no holónomos en for-
ma encadenada pueden encontrarse en la literatura. Por
ejemplo, Ferrara et al. (2023) propone un controlador
adaptable por modos deslizantes que garantiza convergen-
cia en tiempo finito al origen únicamente de la variable
deslizante, aunque la convergencia asintótica al origen para
los estados del sistema se mantiene. En Rocha et al. (2022),
se introduce un controlador que garantiza convergencia en
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tiempo finito de los estados al origen, pero requiere que se
cumpla una condición de sector homogénea.

Otros trabajos aseguran convergencia en tiempo finito
(Zhu et al. (2022)), tiempo fijo (Gao et al. (2020)) o
tiempo predefinido (Sánchez-Torres et al. (2020)), pero
los controladores propuestos requieren señales de control
no acotadas, el ajuste de numerosos parámetros de diseño
o cálculos en ĺınea complejos. Además, el problema más
general de regulación—es decir, la convergencia a un punto
arbitrario en el espacio de estados—normalmente no se
aborda. Este punto es cŕıtico porque, para tales sistemas,
un controlador que estabilice el origen no necesariamente
garantiza la convergencia a otros puntos del espacio de
estados. Cabe destacar que, aunque existen numerosos
resultados sobre control de seguimiento de trayectorias
para UMRs (véase, por ejemplo, Mera et al. (2020), Rochel
et al. (2022), Singhal et al. (2022), Rı́os et al. (2024), Zhou
et al. (2024) y las referencias alĺı citadas), el problema
de regulación difiere fundamentalmente del seguimiento de
trayectorias debido a las restricciones no holónomas.

En este trabajo, contribuimos con un diseño de controlador
que garantiza convergencia en tiempo finito de la posición
y orientación de un robot móvil no holónomo a cualquier
punto del espacio de estados, o a cualquier trayectoria de
referencia factible, desde casi cualquier condición inicial. El
diseño del controlador se basa en un esquema desarrollado
para el sistema de Heisenberg (Mera y Rı́os (2024)), el cual
aprovecha la técnica de control por vector unitario—una
herramienta conocida de modos deslizantes. Sin embargo,
el enfoque propuesto elimina la necesidad de una superficie
deslizante, simplifica el ajuste de parámetros y garantiza
señales de control acotadas. Estas caracteŕısticas son ven-
tajas clave para su implementación práctica.

Notación. Se denota R+ = x ∈ R : x > 0, R− =
x ∈ R : x < 0 y R≥ 0 = x ∈ R : x ≥ 0. La norma euclidia-
na en R

n se denota por || · ||. Se define ⌈a⌋γ := |a|γsign(a),
para cualquier γ ∈ R≥ 0 y cualquier a ∈ R. Además, S1

representa la 1-esfera en R. SO(2) representa el grupo
ortogonal especial en R

2; cualquier elemento de SO(2)
representa una rotación estándar en R

2, definida para
θ ∈ S1 mediante la matriz

R(θ) :=

[

c(θ) −s(θ)
s(θ) c(θ)

]

,

donde c(·) y s(·) representan las funciones trigonométricas
cos(·) y sin(·), respectivamente.

2. PLANTEAMIENTO DEL PROBLEMA

Considere el modelo cinemático del UMR (ver Fig. 1)

θ̇(t) = ω(t), (1)

ẋ(t) = v(t)c(θ), (2)

ẏ(t) = v(t)s(θ), (3)

donde x, y ∈ R denotan el centro de masa del robot
móvil, θ ∈ S1 representa la orientación de las ruedas,
mientras que las entradas de control ω, v ∈ R definen
las velocidades angular y lineal, respectivamente. Para

simplificar la notación, los estados del UMR se escriben

como ξ = (θ, x, y)
⊤ ∈ R

3, mientras que las entradas se

denotan como u = (ω, v)⊤ ∈ R
2.

Figura 1. UMR Schematic

El problema consiste en diseñar un controlador capaz de
resolver simultáneamente la regulación en tiempo finito y
el seguimiento de trayectorias del UMR. En otras palabras,
diseñar un controlador que garantice la convergencia de la
posición y orientación del UMR hacia cualquier trayectoria
de referencia factible 1 ξr(t) = (θr(t), xr(t), yr(t)), la cual
puede ser una referencia constante, desde casi cualquier
condición inicial ξ0 = (θ(0), y(0), x(0)), en un tiempo
finito, i.e., ξ(t) = ξr(t) , para t ≥ T, y T <∞.

3. PRELIMINARES

La dinámica del sistema de Heisenberg están dadas por

ż(t) = Y ⊤(t)JX(t), (4)

Ẋ(t) = Y (t), (5)

para los estados z ∈ R, X ∈ R
2, con condiciones iniciales

z(0) = z0, X(0) = X0. La función Y : R≥0 → R
2

representa la señal de control, y J ∈ R
2×2 corresponde

a la matriz antisimétrica

J =

[

0 −1
1 0

]

.

De manera compacta, podemos definir los estados y en-

tradas del sistema de Heisenberg como q =
[

z,X⊤
]⊤

=

[z, x1, x2]
⊤ ∈ R

3 y Y = [y1, y2]
⊤ ∈ R

2, respectivamente.

4. DISEÑO DEL CONTROLADOR

4.1 Cambio de Coordenadas

El diseño del controlador propuesto se realiza primero en
las coordenadas del sistema de Heisenberg (4)–(5), para
luego ser aplicado al UMR en las coordenadas corres-
pondientes dadas en (1)–(3). Para lograr esto, es posible
utilizar el difeomorfismo Ψ : (ξ, u) → (q, Y ) como un

1 Una trayectoria factible para el UMR es cualquier función ξr :
R≥ 0 → R

3 que satisfaga las ecuaciones dinámicas (1)–(3), incluyen-
do funciones no suaves.
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cambio de coordenadas entre estos dos sistemas. El mapeo
expĺıcito Ψ está dado por











z
x1
x2
y1
y2











=



















1

2
θxc(θ) +

1

2
θys(θ)− xs(θ) + yc(θ)

−1

2
(xc(θ) + ys(θ))

−θ
−ω

−1

2
(v + (yc(θ)− xs(θ))ω)



















,

y su mapeo inverso correspondiente 2 Ψ−1 = Υ explicita-
mente dado por











θ
x
y
ω
v











=











−x1
−2x2c(x1) + (z − x1x2)s(x1)
2x2s(x1) + (z − x1x2)c(x1)

−y1
(z − x1x2)y1 − 2y2











.

Es posible definir las proyecciones ψ : (ξ, u) → q y
η : (ξ, u) → X , a partir de la definición de Ψ como:

q = ψ(ξ) = diag(I3×3,02×2)Ψ(ξ, u), (6)

X = η(ξ) = diag(0, I2×2,02×2)Ψ(ξ, u). (7)

Finalmente, utilizando Υ y observando que z − x1x2 =
yc(θ)− xs(θ), se puede obtener:

u = φ(ξ, Y ) = diag(03×3, I2×2)Υ(q, Y ) = S(ξ)Y, (8)

con

S(ξ) =

[

−1 0
yc(θ)− xs(θ) −2

]

.

Dada una trayectoria de referencia factible y acotada
ξr(t), puede calcularse una trayectoria equivalente en las
coordenadas del sistema de Heisenberg utilizando (6) como
qr(t) = ψ(ξr(t)). Introduciendo el vector de error de
seguimiento como

q(t)− qr(t) =

[

z(t)− zr(t)
X(t)−Xr(t)

]

=

[

z̃(t)
X̃(t)

]

,

para q(t) = ψ(ξ(t)), definiendo

Γ(t) = z̃(t)− X̃⊤(t)JXr(t),

como una variable auxiliar que permite reescribir las
trayectorias de error en una estructura similar al sistema
de Heisenberg original, cuya derivada respecto al tiempo
está dada por

Γ̇(t) =
(

Y (t)− Ẋr(t)
)⊤

JX̃(t).

Es posible reescribir la dinámica de Γ y X̃ como

Γ̇(t) = Y ⊤(t)JX̃(t)− Ẋ⊤
r (t)JX̃(t), (9)

˙̃X(t) = Y (t)− Ẋr(t). (10)

con las condiciones iniciales Γ0 = Γ(0), y X̃0 = X̃(0).

Notando que si X̃ = 0 y Γ = 0, entonces z̃ = 0, y puesto
que sólo se asume que ξ̃r es factible (no necesariamente

suave), es posible asumir Ẋr acotada pero discontinua
(e.g., semi–continua).

2 Se asume que el dominio de Υ se encuentra restringido a la imagen
de Ψ.

Ahora es posible reescribir el problema planteado en la
Sección 2, como diseñar el control Y para el sistema (9)–
(10), tal que asegure la convergencia en tiempo finito al
origen del vector de error de seguimiento

q̃ =
[

Γ, X̃⊤
]⊤

. (11)

4.2 Estructura del Controlador en las Coordenadas del
Sistema de Heisenberg

Antes de presentar formalmente la estructura del contro-
lador, la definición de las siguientes funciones auxiliares es
necesaria.

Definiendo la función ω(q̃) = atan (Φ(q̃)), con

Φ(q̃) =











2β ⌈Γ⌋
1

2

‖X̃‖
, si q̃ 6= 0,

0, si q̃ = 0,

y el parámetro escalar β > 0. También, se definen
los conjuntos Mx̃ = {q̃ ∈ R

3 : X̃ = 0}, y Dβ =
{

q̃ ∈ R
3 : |Φ(q̃)| ≤ 2β2

}

, evidentemente Mx̃ ∩ Dβ = {0}.
Finalmente, se definen las constantas ωβ = atan(2β2) y
Cβ = c(ωβ).

A partir de los resultados presentados en Mera y Rı́os
(2024), donde solo se consideró el problema de regulación
en tiempo finito del sistema de Heisenberg, el siguiente
Teorema extiende estos resultados al caso de seguimiento
y regulación simultáneos en tiempo finito, utilizando la
misma estructura de control pero considerando la dinámi-
ca del error en las coordenadas q̃ y cualquier trayectoria
de referencia factible qr.

Teorema 1. Dada una trayectoria factible qr, para el
sistema de Heisenberg(4)–(5), tal que ‖Ẋr(t)‖ ≤ ∆̄, para
todo t ≥ 0 y para una constante conocida ∆̄ > 0.
Considerando la dinámica del error de seguimiento (9)–
(10), con la entrada de control

Y (t) = Y (q̃) = −γR (ω(q̃(t)))
X̃(t)

‖X̃(t)‖
, (12)

donde X̃/‖X̃‖ ∈
{

θ ∈ R
2 : ‖θ‖ ≤ 1

}

para X̃ = 0, y los

parámetros β ≥ |Γ0|
1

2 /‖X̃0‖, γ > máx
{

∆̄/Cβ, γ0
}

, y

γ0 =

√

‖X̃0‖2 + 4β2|Γ0|
(

‖X̃0‖2 + 2|Γ0|
)

2|Γ0|
1

2 ‖X̃0‖
(

β‖X̃0‖ − |Γ0|
1

2

) ∆̄.

Entonces, el origen del sistema en lazo cerrado es atractivo
en tiempo finito con la región de atracción Ω = Dβ .
Además, Dβ es un conjunto invariante para las soluciones
del sistema en lazo cerrado y el tiempo de asentamiento
satisface Tq̃(q̃0) ≤ ‖X̃0‖/γCβ − ∆̄, i.e., q̃(t) = 0, for all
t ≥ Tq̃.

Observación 1. La entrada de control (12) es únicamen-
te discontinua en q̃ = 0, y es globalmente acotada i.e.,
‖Y (t)‖ = γ, para todo t ≥ 0.

La entrada de control dada en (12) no requiere que Ẋr sea
continua, ni que sea exactamente alimentada en la entrada.
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Sin embargo, si Ẋr es continua y puede ser explicticamente
calculada y alimentada al sistema, es posible relajar las
condiciones en la ganancia γ, y obtener una cota superior
más ajustada para el tiempo de asentamiento, como se
muestra en el siguiente Corolario.

Corolario 1. Considerando el sistema (9)–(10), con la
entrada de control

Y (t) = Y (q̃, Ẋr) = −γR (ω(q̃(t))
X̃(t)

‖X̃(t)‖
+ Ẋr(t), (13)

con β ≥ |Γ0|
1

2 /‖X̃0‖, y γ > 0. Entonces, el origien del
sistema en lazo cerrado es atractivo en tiempo finito, con
la región de atracción Ω = Dβ. Además, el tiempo de

asentamiento satisface Tq̃(q̃0) ≤ ‖X̃0‖/γCβ.

Observación 2. Es posible verificar de la definición de
Dβ , que para cualquier condición inicial dada q̃0 /∈ Mx̃,
y cualquier ganancia γ, siempre existe β > 0, tal que
q̃0 ∈ Dβ . Por lo tanto, siempre se asegura que el origen del
sistema (9)–(10), con el control (13), es atractivo en tiempo
finito. No obstante, notando que para q̃0 ∈ Mx̃\{0} no
existe β > 0, tal que q̃0 ∈ Dβ , para γ > 0. Esto implica que,
para cualquier selección de parámetros γ y β, el conjunto
de medida cero Mx̃\{0} es el único conjunto que no puede
ser incluido en la región de atracción del sistema en lazo
cerrado.

4.3 Aplicación del Diseño del Controlador al UMR

Es es posible obtener un control u(t) asegurando la con-
vergencia en tiempo finito de las soluciones del modelo
cinemático del UMR dado en (1)–(3), a una referencia
factible dada ξr de la siguiente forma. Primero, calculando
la referencia equivalente en las coordenadas del sistema de
Heisenberg como qr(t) = ψ(ξr), después calculando el con-
trol Y (t) en la coordenadas (11) usando (12), y finalmente
aplicando (8) para obtener u(t) = S(ξ(t))(Y (t)), en las
coordenadas de la cinemática del UMR.

El resultado principal, aśı como una condición adicional
para la implementación, se presentan formalmente en el
siguiente Teorema

Teorema 2. Dada una trayectoria deseada, posiblemente
no suave o constante (ξr, ur) : R≥0 → R

5 para la cinemáti-

ca del UMR (1)–(3), satisfaciendo
∥

∥

∥
(∂η/∂ξr)ξ̇r

∥

∥

∥

∞
≤ ∆̄ξ.

Si el control aplicado es dado por u(t) = S(ξ(t))Y (t),
donde Y se diseña de acuerdo al Teorema 1 con q̃ definida
en (11), para qr = ψ(ξr), y q = ψ(ξ). Entonces, para
cualquier condición inicial ψ(ξ0) − ψ(ξr(0)) ∈ Dβ, existe
0 ≤ T < ∞, tal que ξ(t) = ξr(t), para todo t ≥ T, i.e.,
ξ converge en un tiempo finito T a ξr. Además, T está
acotada por arriba como T ≤ (‖η(ξ0)‖/γCβ)− ∆̄ξ.

La condición
∥

∥

∥
(∂η/∂ξr)ξ̇r

∥

∥

∥

∞
≤ ∆̄ξ, requiere que ∂η/∂ξr

sea acotada para la referencia dada ξr. Una condición
suficiente que asegura esto, es que las trayectorias ξr sean
globalmente uniformemente acotadas. En la práctica esto
no es restrictivo, tomando en cuenta que los experimentos

o tareas se llevan a cabo durante un intervalo finito de
tiempo, y la distancia recorrida por el UMR siempre estará
acotada. Para implementar el control u(t) definido en el
Teorema 2, es importante recordar la Observación 1, y
encontrar el conjunto equivalente en las coordenadas del
UMR al conjunto que no puede ser incluido en la región
de atracción. Es posible verificar la condición q̃0 /∈ Mx̃,
directamente en las coordenadas del UMR como X̃0 =
ψ(ξ0)− ψ(ξr(0)) 6= 0, explicitamente esto corresponde a

θr(0) 6= θ0,

xr(0)c(θr(0)) + yr(0)s(θr(0)) 6= x0c(θ0) + y0s(θ0).

Estas condiciones tampoco representan problema alguno
para la implementación, principalmente porque Mx̃ es un
conjunto de medida cero, y en segunda porque siempre es
posible modificar la orientación inicial del UMR aseguran-
do que θr(0) 6= θ0.

5. SIMULACIONES

Con el objetivo de verificar una posible implementación del
control propuesto, las siguientes simulaciones se llevaron a
cabo en Matlab, empleando el método de discretización de
Euler con un paso de integración de 0.001[s].

5.1 Regulación

Las condiciones iniciales dadas para el UMR son ξ0 =
[0, −15, −8]⊤ y el punto de referencia a alcanzar es
ξr = [−π/4, 10, 8]⊤. Esta es una referencia constante,

por lo que Ẋr = 0. Para estas condiciones iniciales, los
parámetros del control (13) se seleccionan satisfaciendo las
condiciones del Corolario 1, con β = 0.1890 y γ = 3. La
entradas de control u(t) se calcularon como se propone en
el Teorema 2. Con la cota superior estimada para el tiempo
de asentamiento T ≤ 4.6405[s]. La Figura 2 muestra las
entradas de control ω y v, donde es evidente que estas
se mantienen continuas hasta ξ(t) = ξr. Finalmente, la
Figura 3 presenta la evolución en el tiempo de los estados
del UMR.

5.2 Seguimiento de Trayectorias Suaves a Pedazos

La trayectoria de referencia considerada, se generó usando
las ecuaciones cinemáticas del UMR (3)–(2), con la entrada
de referencia ur = (ωr, vr) dada por

ur(t) =







(0.5, 2) para 0 ≤ t < 3,

(0, 2) para 3 ≤ t < 5,

(0, 0) para t ≥ 5,

con las condiciones iniciales ξr(0) = [π/4, 5, −5]⊤. La
trayectoria resultante está compuesta de un arco circular
con curvatura constante de R = 0.5/2, for 0 ≤ t < 3,
conectada a una ĺınea recta para 3 ≤ t < 5, terminando
en el punto ξr(t) = [

√
2π, −8, −2], donde se mantiene

constante, para todo t ≥ 5. Las condiciones iniciales del
UMR están dadas en ξ(0) = [0, 5, −7]⊤. Aplicando los
resultados del Teorema 2 con γ = 5, y β = 0.5775, da una

https://doi.org/10.58571/CNCA.AMCA.2025.012

XX Congreso Latinoamericano de Control Automático (CLCA 2025)
13-17 de Octubre, 2025. Cancún, Quintana Roo, México

Copyright© AMCA, ISSN: 2594-2492
71



0 1 2 3 4 5

-8

-6

-4

-2

0

2

4

6

8

10

0 1 2 3 4 5

-3

-2

-1

0

1

2

3

Figura 2. Entradas de Control u

0 1 2 3 4 5

-15

-10

-5

0

5

10

15

Figura 3. ξ vs Tiempo

0 1 2 3 4 5 6 7 8

-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8

-5

-4

-3

-2

-1

0

1

2

3

4

5

Figura 4. Entradas de Control u

estimación de la cota superior del tiempo de asentamiento
de T ≤ 2.4282. Las señales de control obtenidas ω y v se
muestran en la Figura 4. Finalmente, la Figura 5 muestra
la evolución en el tiempo de las trayectorias del UMR,
donde se aprecia claramente que a pesar de la no suavidad
de las trayectorias de referencia la tarea de seguimiento se
logra en tiempo finito con éxito.

6. CONCLUSIONES

Este art́ıculo presenta el diseño de un controlador que
garantiza la convergencia en tiempo finito de la posición y
orientación de un robot móvil no holónomo a cualquier
punto del espacio de estados, o a cualquier trayectoria
factible–incluso a trayectorias suaves a pedazos–desde casi
cualquier condición inicial. El enfoque se basa en resul-
tados anterior relacionados con la convergencia al origen
de las soluciones del Sistema de Heisenberg, y emplea la
herramienta conocida del control por vector unitario. A
diferencia del enfoque de modos deslizantes tradicional,
este diseño no requiere la construcción de una superficie
deslizante. Las simulaciones numéricas ilustran la factibi-
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lidad de aplicación y demuestran el desempeño en tiempo
fintio del controlador.
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