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Abstract: Due to the nonholonomic nature of the Unicycle Mobile Robot (UMR) kinematics,
the regulation and tracking problems are typically addressed separately, often requiring a
unifying time—varying or switched control scheme to handle both tasks simultaneously. In this
result, we introduce a time—invariant controller design capable of solving simultaneously the
tracking and regulation problems, for the UMR, ensuring the convergence of the error vector to
the origin in a finite time. The controller design is based on the unit vector control approach
and a transformation to the Heisenberg system, which is an equivalent diffeomorphic system to

the kinematics of the UMR.
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1. INTRODUCCION

Los robots méviles de tipo uniciclo (UMRs, por sus siglas
en inglés) han atraido una atencién significativa durante
la 1ltima década, principalmente debido a su capacidad
para moverse libremente entre puntos y su amplia gama
de aplicaciones (véase, por ejemplo, Zhang et al. (2022),
Khaledyan et al. (2015) y Zhang y Liu (2014)).

Para este tipo de robot mévil, es comun considerar el mo-
delo cinematico debido a las restricciones en el acceso a las
seniales de voltaje/corriente de los motores de las ruedas.
Un desafio importante en el diseno de controladores para
estos sistemas surge del hecho de que el modelo cinematico
de los UMR no cumple con las condiciones necesarias de
Brockett para la estabilizacion mediante retroalimentacién
suave de estado (Brockett (1983)), como se senala en
Duleba et al. (2012). En consecuencia, los controladores
no suaves o dependientes del tiempo se vuelven esenciales
para esta clase de sistemas robéticos méviles. Ademads, es
importante destacar que el modelo cinematico del UMR, es
difeomorfo al sistema de Heisenberg, lo que permite aplicar
controladores disenados originalmente para este sistema y
resolver asi el problema de regulaciéon de los UMR.

El sistema de Heisenberg, también conocido como integra-
dor de Brockett o integrador no holénomo, es un sistema
no lineal cuyos campos vectoriales generan el dlgebra de
Heisenberg (véase, por ejemplo, Bloch (2003) y Vershik
y Gershkovich (1988)). Este sistema es un modelo pro-
totipico no holénomo para muchas representaciones ma-
tematicas de sistemas fisicos, incluyendo robots moviles
uniciclo. Por esta razén, el sistema de Heisenberg y su
forma encadenada han sido ampliamente utilizados como
referencia para el diseno de controladores y el andlisis
de estabilidad de robots mdviles no holénomos (véase,
por ejemplo, Murray et al. (1994) y Marchand y Alamir
(2003)).

Resultados recientes y notables relacionados con el pro-
blema de estabilizacién de sistemas no holénomos en for-
ma encadenada pueden encontrarse en la literatura. Por
ejemplo, Ferrara et al. (2023) propone un controlador
adaptable por modos deslizantes que garantiza convergen-
cia en tiempo finito al origen tnicamente de la variable
deslizante, aunque la convergencia asintotica al origen para
los estados del sistema se mantiene. En Rocha et al. (2022),
se introduce un controlador que garantiza convergencia en
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tiempo finito de los estados al origen, pero requiere que se
cumpla una condicién de sector homogénea.

Otros trabajos aseguran convergencia en tiempo finito
(Zhu et al. (2022)), tiempo fijo (Gao et al. (2020)) o
tiempo predefinido (Sdnchez-Torres et al. (2020)), pero
los controladores propuestos requieren senales de control
no acotadas, el ajuste de numerosos parametros de diseno
o cédlculos en linea complejos. Ademads, el problema més
general de regulacién—es decir, la convergencia a un punto
arbitrario en el espacio de estados—normalmente no se
aborda. Este punto es critico porque, para tales sistemas,
un controlador que estabilice el origen no necesariamente
garantiza la convergencia a otros puntos del espacio de
estados. Cabe destacar que, aunque existen numerosos
resultados sobre control de seguimiento de trayectorias
para UMRs (véase, por ejemplo, Mera et al. (2020), Rochel
et al. (2022), Singhal et al. (2022), Rios et al. (2024), Zhou
et al. (2024) y las referencias alli citadas), el problema
de regulacién difiere fundamentalmente del seguimiento de
trayectorias debido a las restricciones no holénomas.

En este trabajo, contribuimos con un disetio de controlador
que garantiza convergencia en tiempo finito de la posicién
y orientacién de un robot mévil no holénomo a cualquier
punto del espacio de estados, o a cualquier trayectoria de
referencia factible, desde casi cualquier condicién inicial. El
diseno del controlador se basa en un esquema desarrollado
para el sistema de Heisenberg (Mera y Rios (2024)), el cual
aprovecha la técnica de control por vector unitario—una
herramienta conocida de modos deslizantes. Sin embargo,
el enfoque propuesto elimina la necesidad de una superficie
deslizante, simplifica el ajuste de pardmetros y garantiza
senales de control acotadas. Estas caracteristicas son ven-
tajas clave para su implementacién préctica.

Notaciéon. Se denota R+ = ze€eR:z>0 R— =
reER:2<0yR>0=x€R:z>0. La norma euclidia-
na en R” se denota por || -||. Se define [a]” := |a|7sign(a),
para cualquier v € R> 0 y cualquier a € R. Ademds, S*
representa la l-esfera en R. SO(2) representa el grupo
ortogonal especial en R?; cualquier elemento de SO(2)
representa una rotacién estdndar en R?, definida para
6 € S! mediante la matriz

Nl

donde ¢(+) y s() representan las funciones trigonométricas
cos(+) y sin(+), respectivamente.

2. PLANTEAMIENTO DEL PROBLEMA

Considere el modelo cinemético del UMR (ver Fig. 1)

0(t) = w(t), (1)
(t) = v(t)e(0), (2)
y(t) = v(t)s(0), 3)
donde z,y € R denotan el centro de masa del robot
mévil, # € S representa la orientacién de las ruedas,
mientras que las entradas de control w,v € R definen
las velocidades angular y lineal, respectivamente. Para
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simplificar la notacién, los estados del UMR se escriben
como & = (O,x,y)T € R?, mientras que las entradas se
denotan como u = (w,v) € R2.

I
I
I
I
I
T

Figura 1. UMR Schematic

El problema consiste en disenar un controlador capaz de
resolver simultaneamente la regulacién en tiempo finito y
el seguimiento de trayectorias del UMR. En otras palabras,
disenar un controlador que garantice la convergencia de la
posicion y orientacion del UMR hacia cualquier trayectoria
de referencia factible! &.(t) = (0,.(t), z,(t), y.()), la cual
puede ser una referencia constante, desde casi cualquier
condicién inicial & = (6(0),y(0),z(0)), en un tiempo
finito, i.e., £(t) = &-(t) ,parat > T, y T < oo.

3. PRELIMINARES

La dinamica del sistema de Heisenberg estdan dadas por
2t) =Y ()TX(t), (4)
X(t) =Y(t), (5)
para los estados z € R, X € R2, con condiciones iniciales
2(0) = 20,X(0) = Xp. La funcién Y : Rsg — R?
representa la sefial de control, y J € R2?*2 corresponde
a la matriz antisimétrica

0 -1
J= [1 ] }
De manera compacta, podemos definir los estados y en-

tradas del sistema de Heisenberg como ¢ = [Z,XT]T =

[z,21,25] €R3y Y = [y1,12] € R2, respectivamente.
4. DISENO DEL CONTROLADOR
4.1 Cambio de Coordenadas

El diseno del controlador propuesto se realiza primero en
las coordenadas del sistema de Heisenberg (4)—(5), para
luego ser aplicado al UMR en las coordenadas corres-
pondientes dadas en (1)—(3). Para lograr esto, es posible
utilizar el difeomorfismo ¥ : (§,u) — (¢,Y) como un

1 Una trayectoria factible para el UMR es cualquier funcién &, :
R> 0 — R? que satisfaga las ecuaciones dindmicas (1)—(3), incluyen-
do funciones no suaves.
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cambio de coordenadas entre estos dos sistemas. El mapeo
explicito ¥ esta dado por

i %HZCC(H) + %Gys(ﬁ) — xs(0) + yc(6)
o 5 (e(6) +y5(6))
T2 | = -0 )
Y1 W
Y2 1
2 (0t (ue0) — as(0))e)

y su mapeo inverso correspondiente? ¥~! = T explicita-
mente dado por

0 —XT1

x —2z9¢(z1) + (2 — x122)8(21)
y | = | 2xzas(z1) + (2 — z122)c(21)
w _yl

v (z — x122)y1 — 2y2

Es posible definir las proyecciones v : (§,u) — ¢y
n: (&, u) = X, a partir de la definicién de ¥ como:

q = Y(§) = diag(lzx3, 02x2) ¥(§, u), (6)
X = 77(5) = dla‘g(oa IQX27 O2><2)\I](§7 ’LL) (7

Finalmente, utilizando Y y observando que z — x12x2 =
yc(0) — zs(0), se puede obtener:

u=¢(Y) = diag(03x3, l2x2)T(q,Y) = S(§)Y,  (8)

con

-1 0
5¢) = [yc(ﬁ) —xs(0) —2} :
Dada una trayectoria de referencia factible y acotada
&:(t), puede calcularse una trayectoria equivalente en las
coordenadas del sistema de Heisenberg utilizando (6) como
qr(t) = ¥(&-(¢)). Introduciendo el vector de error de
seguimiento como

=00 = 050 | =[]
para ¢(t) = ¥(&(t)), definiendo
D(t) = 2(t) = X T ()T X (1),
como una variable auxiliar que permite reescribir las
trayectorias de error en una estructura similar al sistema

de Heisenberg original, cuya derivada respecto al tiempo
estd dada por

. . T -
(t) = (Y(t) - Xr(t)) JX ().
Es posible reescribir la dindmica de I' y X como
L) =Y T ()X (1) - X,/ ()T X (1), 9)
X(t) = Y(t) — X, (t). (10)
con las condiciones iniciales 'y = I'(0), y Xo = X (0).

Notando que si X=0 y I' =0, entonces z = 0, y puesto
que sélo se asume que &, es factible (no necesariamente

suave), es posible asumir X, acotada pero discontinua
(e.g., semi—continua).

2 Se asume que el dominio de T se encuentra restringido a la imagen
de W.
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Ahora es posible reescribir el problema planteado en la
Seccidén 2, como disenar el control Y para el sistema (9)—
(10), tal que asegure la convergencia en tiempo finito al
origen del vector de error de seguimiento
T

i=[r %7 (11)
4.2 Estructura del Controlador en las Coordenadas del
Sistema de Heisenberg

Antes de presentar formalmente la estructura del contro-
lador, la definicién de las siguientes funciones auxiliares es
necesaria.

Definiendo la funcién w(g) = atan ($(§)), con

B0 . L,
T
0, si ¢=0,
y el parametro escalar S > 0. También, se definen
los conjuntos Mz = {§ € R® : X = 0}, y Dy =
{G € R?:|9(q)| < 2B%}, evidentemente Mz N Dg = {0}.
Finalmente, se definen las constantas wg = atan(25?%) y
Cﬁ = C(LUQ).

®(q) =

A partir de los resultados presentados en Mera y Rios
(2024), donde solo se consideré el problema de regulacién
en tiempo finito del sistema de Heisenberg, el siguiente
Teorema extiende estos resultados al caso de seguimiento
y regulaciéon simultédneos en tiempo finito, utilizando la
misma estructura de control pero considerando la dinami-
ca del error en las coordenadas ¢ y cualquier trayectoria
de referencia factible g;..
Teorema 1. Dada una trayectoria factible q,., para el
sistema de Heisenberg(4)—~(5), tal que || X,.(t)|| < A, para
todo t > 0 y para una constante conocida A > 0.
Considerando la dindmica del error de sequimiento (9)—
(10), con la entrada de control

(W(@(®) = (12)

—Y() = —~R 7
Y(t)=Y(q) =~ X0

donde X/||X|| € {6 eR?: 0| <1} para X =0,y los
pardmetros B > |1"0|%/H)~(0||, v > méx{A/CB,vo}, Yy

\M%W+MNH@XW+MRDA

21To| | Xoll (Il Xoll - ITol?)
Entonces, el origen del sistema en lazo cerrado es atractivo
en tiempo finito con la region de atraccion Q = Dg.
Ademds, Dg es un conjunto invariante para las soluciones
del sistema en lazo cerrado y el tiempo de asentamiento
satisface T3(qo) < || Xol|/vCs — A, i.e., (t) = 0, for all
t>1T5.
Observacion 1. La entrada de control (12) es tinicamen-
te discontinua en ¢ = 0, y es globalmente acotada i.e.,
IY'(t)|] =, para todo t > 0.

X(t)

La entrada de control dada en (12) no requiere que X, sea
continua, ni que sea exactamente alimentada en la entrada.
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Sin embargo, si X, es continua y puede ser explicticamente
calculada y alimentada al sistema, es posible relajar las
condiciones en la ganancia 7, y obtener una cota superior
més ajustada para el tiempo de asentamiento, como se
muestra en el siguiente Corolario.

Corolario 1. Considerando el sistema (9)—(10), con la
entrada de control

R (()
Y(t) =Y(qXr) = —vR(w(q(t) X (@)l

con B > |Tolz/||Xoll, ¥y v > 0. Entonces, el origien del
sistema en lazo cerrado es atractivo en tiempo finito, con
la region de atraccion Q = Dg. Ademds, el tiempo de

asentamiento satisface Ty(Go) < || Xoll/vCs-

+X,(t), (13)

Observacion 2. Es posible verificar de la definicién de
Dg, que para cualquier condicién inicial dada Gy ¢ M3z,
y cualquier ganancia -, siempre existe S > 0, tal que
Go € Dg. Por lo tanto, siempre se asegura que el origen del
sistema (9)—(10), con el control (13), es atractivo en tiempo
finito. No obstante, notando que para Go € M3z\{0} no
existe 8 > 0, tal que go € Dg, paray > 0. Esto implica que,
para cualquier seleccién de pardametros v y 3, el conjunto
de medida cero M;\{0} es el tinico conjunto que no puede
ser incluido en la regién de atraccion del sistema en lazo
cerrado.

4.8 Aplicacion del Diserio del Controlador al UMR

Es es posible obtener un control u(t) asegurando la con-
vergencia en tiempo finito de las soluciones del modelo
cinemético del UMR dado en (1)-(3), a una referencia
factible dada &, de la siguiente forma. Primero, calculando
la referencia equivalente en las coordenadas del sistema de
Heisenberg como ¢, (t) = 9 (&), después calculando el con-
trol Y'(¢) en la coordenadas (11) usando (12), y finalmente
aplicando (8) para obtener u(t) = S(£(¢))(Y (t)), en las
coordenadas de la cinematica del UMR.

El resultado principal, asi como una condicién adicional
para la implementacion, se presentan formalmente en el
siguiente Teorema

Teorema 2. Dada una trayectoria deseada, posiblemente
no suave o constante (&, u,) : R>g — R® para la cinemdti-

ca del UMR (1)—(3), satisfaciendo ’ (877/8@)6” < Ag.
Si el control aplicado es dado por u(t) = S(&(t))Y (¢),

donde Y se disena de acuerdo al Teorema 1 con q definida
en (11), para g = ¥(&,), y g = ¥(£). Entonces, para
cualquier condicion inicial ¥ (&) — ¥(£,-(0)) € Dg, existe
0 < T < oo, tal que &(t) = &.(t), para todo t > T, i.e.,
& converge en un tiempo finito T a &.. Ademds, T estd
acotada por arriba como T < (||n(&o)|l/vCs) — Ae.

La condicién H((’“)n/@{r)f}’ < Ag, requiere que 9n/0&,

sea acotada para la referencia dada &.. Una condicién
suficiente que asegura esto, es que las trayectorias &, sean
globalmente uniformemente acotadas. En la practica esto
no es restrictivo, tomando en cuenta que los experimentos
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o tareas se llevan a cabo durante un intervalo finito de
tiempo, y la distancia recorrida por el UMR siempre estara
acotada. Para implementar el control u(t) definido en el
Teorema 2, es importante recordar la Observacién 1, y
encontrar el conjunto equivalente en las coordenadas del
UMR al conjunto que no puede ser incluido en la regién
de atraccién. Es posible verificar la condicién gy ¢ Mg,
directamente en las coordenadas del UMR como XO =
¥(&) — ¥ (&-(0)) # 0, explicitamente esto corresponde a

er(o) 7é 907
2 (0)c(0:(0)) + y-(0)5(0:(0)) # oc(bo) + yos(6o)-

Estas condiciones tampoco representan problema alguno
para la implementacién, principalmente porque Mj; es un
conjunto de medida cero, y en segunda porque siempre es
posible modificar la orientacién inicial del UMR aseguran-
do que 6,-(0) # 6.

5. SIMULACIONES

Con el objetivo de verificar una posible implementacién del
control propuesto, las siguientes simulaciones se llevaron a
cabo en Matlab, empleando el método de discretizacién de
Euler con un paso de integracién de 0.001[s].

5.1 Regulacion

Las condiciones iniciales dadas para el UMR son £ =
[0, —15, —8]"7 y el punto de referencia a alcanzar es
& = [-7m/4, 10, 8]T. Esta es una referencia constante,
por lo que X, = 0. Para estas condiciones iniciales, los
parametros del control (13) se seleccionan satisfaciendo las
condiciones del Corolario 1, con § = 0.1890 y v = 3. La
entradas de control u(t) se calcularon como se propone en
el Teorema 2. Con la cota superior estimada para el tiempo
de asentamiento T < 4.6405[s]. La Figura 2 muestra las
entradas de control w y v, donde es evidente que estas
se mantienen continuas hasta £(t) = &.. Finalmente, la
Figura 3 presenta la evolucion en el tiempo de los estados
del UMR.

5.2 Sequimiento de Trayectorias Suaves a Pedazos
La trayectoria de referencia considerada, se generé usando

las ecuaciones cinemdticas del UMR (3)—(2), con la entrada
de referencia u, = (wy, v,) dada por

(0.5,2) para0<t<3,
ur(t) = < (0,2) para 3 <t < 5,
(0,0) parat>5,
con las condiciones iniciales &,.(0) = [r/4, 5, —5]". La

trayectoria resultante estd compuesta de un arco circular
con curvatura constante de R = 0.5/2, for 0 < t < 3,
conectada a una linea recta para 3 < t < 5, terminando
en el punto &.(t) = [v2r, —8, —2], donde se mantiene
constante, para todo ¢ > 5. Las condiciones iniciales del
UMR estén dadas en £(0) = [0, 5, —7]T. Aplicando los
resultados del Teorema 2 con v =5,y 8 = 0.5775, da una
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Figura 2. Entradas de Control u Figura 4. Entradas de Control u

estimacién de la cota superior del tiempo de asentamiento

de T' < 2.4282. Las senales de control obtenidas w y v se

muestran en la Figura 4. Finalmente, la Figura 5 muestra
15 la evolucién en el tiempo de las trayectorias del UMR,
donde se aprecia claramente que a pesar de la no suavidad
de las trayectorias de referencia la tarea de seguimiento se
logra en tiempo finito con éxito.

6. CONCLUSIONES

Este articulo presenta el diseno de un controlador que
garantiza la convergencia en tiempo finito de la posicién y
orientaciéon de un robot mévil no holénomo a cualquier
punto del espacio de estados, o a cualquier trayectoria
factible—incluso a trayectorias suaves a pedazos—desde casi
cualquier condicién inicial. El enfoque se basa en resul-
tados anterior relacionados con la convergencia al origen
de las soluciones del Sistema de Heisenberg, y emplea la
herramienta conocida del control por vector unitario. A
diferencia del enfoque de modos deslizantes tradicional,
Figura 3. £ vs Tiempo este diseno no requiere la construccién de una superficie
deslizante. Las simulaciones numéricas ilustran la factibi-
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Figura 5. & vs Tiempo

lidad de aplicacién y demuestran el desempeno en tiempo
fintio del controlador.
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