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Abstract: In this research, the problem of path tracking and data fusion is addressed using the
Extended Kalman Filter to improve the accuracy in states estimating of the bicycle kinematic
model. The pure pursuit algorithm based on vehicle geometry is employed to achieve path
tracking. A novel nonlinear control strategy is implemented for controlling electric motors in a
differential traction system. The Ackermann geometry model is used to establish the reference
speeds of the motors and enhance maneuver stability in curved paths. Finally, experimental
results are presented for tracking a Lemniscate path under different position update data times.
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1. INTRODUCCIÓN

Un veh́ıculo autónomo es capaz de percibir su entorno
y navegar por śı mismo sin intervención humana, para
ello debe estar equipado con sistemas de percepción y
posicionamiento del entorno, planificación de decisiones
y control de ejecución Vivacqua et al. (2018). Reciente-
mente han presentado diversas estrategias de control, en
Wang et al. (2019) se propone un control de seguimiento
de ruta para veh́ıculos autónomos basado en un modelo de
control predictivo mejorado MPC, dicha mejora consiste
en la asignación adaptativa del peso en la función de
costo a través del algoritmo de control adaptativo difuso,
en Hu et al. (2022) presentan un control conocido como
“drifting” y un MPC para el seguimiento de trayecto-
ria, el controlador propuesto integra el modelo de deriva
linealizado y el modelo de seguimiento, en Tang et al.
(2020) se describe el acoplamiento de un MPC en cascada
con un regulador PID y un compensador de ángulo de
deslizamiento lateral. Una variante del MPC se propone
en Guo et al. (2020) y consiste en tener un modelo no
lineal NMPC para el seguimiento de trayectoria de los
veh́ıculos eléctricos autónomos (AEV), se incorpora un
algoritmo de continuación residual mı́nimo generalizado
C/GMRES que se aplica para resolver la optimización en
el NMPC.

Como alternativas al modelo de control predictivo, en
Hu et al. (2019) se diseña un control de modo deslizante
integral (ISMC), se propone un filtro de Kalman exten-
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dido robusto y desarrollan una red neuronal de función de
base radial adaptativa mejorada (RBFNN). En Lee et al.
(2019) presentan un control gaussiano cuadrático lineal
(LQG) basado en modelos con matriz Q adaptativa, se
incorpora un observador. En Wu et al. (2019), se presenta
la estrategia de control que se basa en el modo deslizante
de terminal no singular (NTSM) y el control de rechazo
activo de perturbaciones (ADRC).

En este trabajo se propone diseñar un control de
seguimiento de trayectoria basado en la integración de
varios sistemas de control, dicho enfoque es robusto ante
perdida, latencia o ruido en las lecturas de posición del
veh́ıculo, permite un control de velocidad diferencial en
la tracción para mejorar la estabilidad de maniobra en
trayectorias curvas, cuenta con rechazo activo de pertur-
baciones en el control de los motores eléctricos. Dicho
enfoque tiene un coste computacional reducido permi-
tiendo su implementación en sistemas de bajo costo, en
comparación con los (MPC) que actualmente representan
una de las estrategias de control más utilizadas. El resto
del documento está organizado de la siguiente manera: en
la sección 2 se presenta el modelo matemático del veh́ıculo
y el enunciado del problema. En la sección 3 se describe
el control de seguimiento de trayectoria con cada uno
de los subsistemas que lo conforman. La plataforma de
experimentación y los resultados obtenidos se muestran
en la sección 4, finalmente en la sección 5 las conclusiones
son presentadas.
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2. PRELIMINARES Y FORMULACIÓN DEL
PROBLEMA

Se pretende diseñar e implementar un sistema de control
en lazo cerrado para que un veh́ıculo robótico con tracción
diferencial (dos ruedas motrices independientes en el eje
trasero y un sistema de dirección en el eje delantero (ver
Fig. 3.)) pueda seguir una trayectoria de referencia.

2.1 Modelo matemático del veh́ıculo

Considere un veh́ıculo como el mostrado en la Fig. 1,
observe que la representación del automóvil se simplifica a
un sistema de solo dos ruedas (modelo de la bicicleta), una
de dirección (delantera) y una de tracción (trasera), para
determinar la dinámica del movimiento, se tomará como
referencia un punto sobre la rueda trasera, por tanto, el
modelo cinemático queda definido como:

Σq :=


ẋ = vxcos (θ)

ẏ = vxsin (θ)

θ̇ = ω

(1)

donde vx y ω son la velocidad lineal y angular del
veh́ıculo respectivamente, (ω) puede definirse a partir
de la velocidad lineal y del ángulo de dirección δ de la
siguiente forma:

ω =
vx
R

=
vx
L
tan(δ) (2)

El prototipo utilizado en este trabajo posee tracción
diferencial, por tanto, la velocidad lineal vx depende de
las velocidades angulares de las ruedas ωL y ωR a partir
de la ecuación:

vx = f(ωL, ωR) =
r

2
(ωL, ωR) (3)

donde r es el radio de las ruedas, ωL y ωR son las
velocidades angulares de las ruedas de tracción.

El control de velocidad se aplica en ambos motores,
definamos:

ωmi
, umi

con i ∈ {R,L} (4)

como la velocidad angular de los motores y el voltaje,
derecho (R) e izquierdo (L), respectivamente. Consider-
emos también la siguiente ecuación de movimiento para
ambos motores.

ω̇mi = −aωmi + bum + ξi (5)

donde a,b ∈ R>0 son constantes que dependen de los
parámetros eléctricos y mecánicos del motor y que en
este trabajo se asumirán desconocidos. ξi ∈ R representa
una señal que concentra las perturbaciones externas,
originadas por las fuerzas tangenciales presentes en las
ruedas del veh́ıculo y reflejadas como un momento de
fuerzas alrededor del eje de rotación.

2.2 Enunciado del Problema

El problema de seguimiento de trayectoria consiste en
diseñar una acción de control para que el sistema siga una
ruta parametrizada en el tiempo y en el espacio. El ob-
jetivo es minimizar los errores de seguimiento respetando
las restricciones dinámicas del sistema. Al tratarse de un
veh́ıculo con tracción diferencial se requiere controlar la
velocidad de los motores eléctricos de forma independi-
ente con la capacidad de rechazar perturbaciones tales
como: resistencia por pendiente, aerodinámica, rodadura
y cambios de carga. Para cerrar el lazo de control de
alto nivel se precisa conocer la posición y orientación
del veh́ıculo de forma precisa, en entornos reales los sis-
temas de comunicación, geolocalización y sensores son
susceptibles a fallas o latencias, determinar la posición
y orientación del veh́ıculo a partir de una sola fuente
de información resulta inconveniente, por tal motivo, se
prefiere que las entradas de posición y orientación del
robot se obtengan mediante la fusión sensorial de datos
de odometŕıa y de un sistema de captura de movimiento
OptiTrack usando un Filtro de Kalman Extendido (EKF).
Finalmente es necesaria la validación de los algoritmos de
control de forma experimental para lo cual se necesita
contar con una plataforma capaz de monitorear las vari-
ables del sistema en tiempo real.

Considere el sistema dinámico no lineal en espacio de
estados:

Ẋ = f(q, u, t), x(t0) = 0 (6)

donde:

q(t) ∈ Rn es el vector de estados,
u(t) ∈ Rm es el vector de entradas de control,
f : RnxRmxR → Rn es una función continua que describe
la dinámica del sistema.

el vector de estados q se define como:

q = [x y θ]T (7)

donde:

x, y son coordenadas de posición,
θ ángulo de orientación.

La trayectoria de referencia deseada suave y acotada,
f́ısicamente realizable de acurdo a las restricciones de
movimiento del veh́ıculo, esta dada por:

qd = [xd yd θd] ∈ Rn, t ∈ [t0, tf ] (8)

de manera que el error de seguimiento es:

e = q − qd (9)

el objetivo de control consiste en diseñar una ley de
control u tal que:

∥ e ∥< ϵ ∀t ≥ T, ϵ > 0 (10)
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Fig. 1. Modelo de la bicicleta tomando como referencia
de posición el punto medio sobre el eje trasero.

3. CONTROL DE SEGUIMIENTO DE
TRAYECTORIA

El control de seguimiento de trayectoria propuesto se
muestra en la Fig. 2.

Fig. 2. Diagrama de bloques de la estrategia de control de
seguimiento de trayectoria, el filtro de kalman estima
la posición cada 10 milisegundos y corrige cada 5
segundos con la información de las cámaras.

3.1 Algoritmo de persecución pura (Pure pursuit)

El algoritmo pure pursuit se basa en la geometŕıa del
veh́ıculo, la posición del mismo esta referenciada a un
punto medio del eje trasero, de manera que el movimiento
en ese punto es descrito por el modelo cinemático de la
bicicleta (1). Para el seguimiento de trayectoria, se define
a vx como una constante o en función de la velocidad de
la trayectoria, ld representa la distancia de anticipación al
punto objetivo y puede ser definida como una constante o
en función de vx (Yang et al. (2024)), luego el algoritmo se
encarga de establecer el ángulo de dirección que permitirá
alcanzar la posición objetivo, el ángulo de dirección δ se
establece como:

δ = arctan

(
2Lsin(α)

ld

)
(11)

en (Yang et al. (2024); Lal et al. (2017)), definen k como
la curvatura que representa el inverso de R

k =
1

R
=

2sin(α)

ld
(12)

El error transversal a la trayectoria se define como la
distancia lateral entre el vector de rumbo y el punto
de destino. La relación entre la curvatura k y el error
transversal e es:

k =
2

ld2
e (13)

La ecuación anterior muestra que la curvatura k es pro-
porcional al error transversal a la trayectoria. A medida
que aumenta el error, también lo hace la curvatura, esto
permite que el veh́ıculo vuelva a la trayectoria de forma
más agresiva.

3.2 Diferencial electrónico

Considerando la geometŕıa de Ackermann es posible de-
terminar la velocidad de las ruedas interna y externa en
una trayectoria curva, es importante mencionar que el
modelo es válido a bajas velocidades, sin tomar en cuenta
las fuerzas laterales y el deslizamiento de las ruedas de
tracción. El modelo geométrico se muestra en la Fig. 3,
este permite determinar el radio de rotación R a partir
del ángulo de dirección (δL, δR) y los valores de velocidad
angular que cada rueda de tracción debe tener (ωL, ωR).

Fig. 3. Geometŕıa de Ackermann para un veh́ıculo con
tracción trasera y diferencial electrónico (Magallán
et al. (2008)).

Haciendo uso de geometŕıa básica, los ángulos de di-
rección pueden expresarse en función del radio de rotación
de la siguiente forma:

δR = tan−1

(
L

R+ d
2

)
, δL = tan−1

(
L

R− d
2

)
(14)

Para ángulos pequeños, es posible considerar ambos
ángulos como un solo parámetro, denominado ángulo de
Ackermann (Magallán et al. (2008)):
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δ =
δL + δR

2
, tan(δ) =

L

R
(15)

La velocidad angular de cada rueda de tracción se puede
expresar en función de la velocidad lineal del veh́ıculo vx
y del ángulo de Ackermann δ, esto permite implementar
un sistema de control de velocidad independiente en las
ruedas de tracción traseras conocido como diferencial
electrónico

ωL =
vx
r

(
1−

(
d

2

tan(δ)

L

))
(16)

ωR =
vx
r

(
1 +

(
d

2

tan(δ)

L

))
(17)

3.3 Control de velocidad NESO

El objetivo de control consiste en garantizar que ωm →
ωmd, ω̇md = 0, cuando t → ∞ independientemente de
las incertidumbres en el modelo denotado por a, y la
perturbación ξ que representa la suma de perturbaciones
endógenas y exógenas y puede ser variante en el tiempo.

Antes de definir el algoritmo de control, es necesario
establecer las siguientes consideraciones:

(1) a > 0 tal que a ∈ [amin, amax]
(2) ξ ∈ [hmin, hmax]
(3) um(t) ∈ [−M,M ], ∀ M > 0

(4) |dξdt | ≤ h0

Definición 3.1. (Función de saturación) Dada una con-
stante positiva M , la función continua y no decreciente
σM : R → R es definida como:

(1) σM = s si |s| < M ;

(2) σM = M · sign(s) ; en otro caso
(18)

La ley de control propuesta es la siguiente:

ż = λf (u− z)

u = σM (λ(ωmd − ωm) + z)
(19)

solo es necesario sintonizar la ganancia del estimador λf

y la del controlador λ, el desarrollo del control y análisis
de estabilidad ya fueron publicados y se pueden consultar
en Mart́ınez-Ramı́rez et al. (2024).

3.4 Filtro de kalman extendido

En aplicaciones de navegación en interiores o exteriores es
común utilizar estrategias de estimación y actualización
de posición (odometŕıa, cámaras, sensores láser, sensores
ultrasonicos, GPS, etc.), para robustecer los sistemas de
localización y lograr la fusión de datos de diversas fuentes
se emplea el Filtro de Kalman Extendido (FKE) por
tratarse de un sistema no lineal el modelo cinemático de la
bicicleta (1), en este trabajo se emplea la posición medida
por el sistema de cámaras Optitrack y la estimación de
la posición por odometŕıa a partir de la velocidad de los

motores. El modelo cinemático de la bicicleta en tiempo
discreto Xk+1 se define como:

Xk+1 = Xk +

[
vxcos(θk)∆t
vxsin(θk)∆t

ω∆t

]
+Wk (20)

con

Xk = [xk yk θk]
T (21)

donde xk y yk son las coordenadas cartesianas de posición,
θk es la orientación, ∆t es el tiempo de muestreo de
actualización de los estados, y Wk es el vector del ruido
del proceso. Para la implementación del FKE debemos
de linealizar el modelo f(xk, uk) definido en (1) alrededor
del estado actual a lo largo de la trayectoria para usarla
en la propagación de la covarianza, la matriz Jacobiana
esta dada por:

Fk =
∂f(xk, uk)

∂Xk
=

[
1 0 −vxsin(θk)∆t
0 1 vxcos(θk)∆t
0 0 1

]
(22)

el modelo de medición es el siguiente:

Zk = h(Xk) + Vk (23)

donde h es la matriz de observación y determina los
estados del sistema que son medidos, Zk es el vector de
mediciones y Vk representa el ruido en las mismas. La
linealización del modelo de medición alrededor del estado
actual se define como:

Hk =
∂h(Xk)

∂Xk

(24)

El FKE utiliza dos matrices de covarianza para actualizar
la estimación de los estados y mejorar la precisión en
la determinación de la posición del veh́ıculo, la matriz
Qk relacionada con la covarianza del ruido del proceso,
y la matriz Rk asociada al ruido en las mediciones. La
matriz de covarianza Qk representa las incertidumbres en
el modelo cinemático, toma en cuenta los errores debidos
al deslizamiento de las ruedas, superficies irregulares y
otros factores que afectan el movimiento del robot. En
(Nugraha et al. (2024)) proponen que la matriz Qk se
defina basado en la variabilidad esperada en las entradas
de control y las caracteŕısticas de ruido del modelo de
movimiento bajo la suposición de que el ruido en las
velocidades lineales y angulares son independientes y
gaussianos, aśı la matriz Qk es definida por:

Qk =

σ2
vx 0 0
0 σ2

vy 0
0 0 σ2

ω

 (25)

donde σ2
vx, σ

2
vy, σ

2
ω son las varianzas de ruido en la veloci-

dad longitudinal, lateral y angular respectivamente.
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La matriz de covarianza del ruido de medición Rk gen-
eralmente se define en función de las especificaciones de
los sensores y la variabilidad esperada en las mediciones

Rk = σ2
m (26)

con σ2
m como la varianza en las mediciones del sistema

Optitrack.

El algortimo del FKE para fusionar los datos, se ejecuta
de forma iterativa realizando las dos acciones principales:

3.5 Predicción

X̂k|k−1 = f(X̂k−1|k−1, uk) (27)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (28)

3.6 Actualización y corrección

yk = Zk − h(X̂k|k−1)) (29)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +R)−1 (30)

X̂k|k = X̂k|k−1 +Kkyk (31)

Pk|k = (I −KkHk)Pk|k−1 (32)

donde Kk es conocida como la ganancia de Kalman.

Fig. 4. Plataforma basada en el sistema Optitrack para
detección de posición y orientación del veh́ıculo.

4. RESULTADOS EXPERIMENTALES

La plataforma de experimentación que se diseño e imple-
mento (Fig. 4), esta basada en el sistema de captura de
movimiento Optitrack, se utiliza ROS2 para generar un
nodo de comunicación y publicar el estado del veh́ıculo
(posición y orientación), el modulo de control se suscribe
a dicho nodo y cierra el lazo de retroalimentación. El pro-
totipo es un robot móvil con tracción trasera diferencial

y geometŕıa de Ackermann, capaz de alcanzar una ve-
locidad lineal máxima de 1m/s. Los resultados obtenidos
se muestran en la Fig. 5, en el inciso a) se comparan
las implementación del algoritmo pure pursuit usando
la lectura de las cámaras, estimación de posición por
odometŕıa y fusión de datos con kalman respectivamente,
en b) se muestra el resultado obtenido con una latencia en
las cámaras de ∆t = 0.5s, en c) se presentan los resultados
obtenidos utilizando únicamente la estimación de posición
con odometria y finalmente en d) se observa el resultado
de la fusión de datos con el filtro de Kalman, la predicción
de posición por odometŕıa se realiza cada 10ms y se
corrige el error con la lectura de las cámaras cada ∆t = 5s.
La tabla 1, muestra los ı́ndices de desempeño obtenidos
en las diferentes implementaciones, el mejor resultado
corresponde con el uso de las cámaras leyendo la posición
cada 10ms. Sin embargo, a pesar de los resultados en
los ı́ndices de desempeño, la implementación del filtro
de kalman representa una gran ventaja en el control de
sistemas reales donde la lectura de posición con sensores
contiene ruido o ésta se da en intervalos de tiempo grandes
(sistemas GPS), bajo esas condiciones el filtro de kalman
es la opción más robusta, observese los incisos b) y d) de
la Fig. 5. La evolución de las variables del sistema en la
implementación del control de seguimiento de trayectoria
usando el filtro de kalman, con lecturas de posición cada
5 segundos, y predicción usando el modelo cinemático de
la bicicleta en tiempo discreto cada 10ms se presentan en
Fig. 6.

5. CONCLUSIONES

Se implementó un sistema de control de seguimiento de
trayectoria que integra un control de alto nivel basado
en la geometŕıa del veh́ıculo (pure pursuit). Se utilizó el
modelo de la geometŕıa de Ackermann para determinar
las velocidades de referencia de los motores eléctricos, se
implementó una novedosa estrategia de control no lineal
libre de modelo con rechazo activo de perturbaciones para
el control de regulación en los motores, se diseño un
filtro de Kalman extendido para la fusión de datos. Los
resultados muestran que la integración de los algoritmos
bajo este enfoque es adecuada para muchas aplicaciones
que requieran del seguimiento de trayectoria. En trabajos
futuros se pretende cambiar el control de alto nivel por
un control basado en modelo (MPC) además de realizar
pruebas en exteriores con GPS.
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