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Resumen This work presents the design and numerical validation of a Frugal Model Predictive
Control (FMPC) scheme for trajectory tracking in a quadrotor-type unmanned aerial vehicle
(UAV). Considering the computational limitations of embedded platforms, the proposed
controller is based on a reduced model and a control parametrization that reduces the number
of decision variables from 90 to 6, enabling the enforcement of explicit constraints on position,
acceleration, and slew rate. A convex quadratic formulation is adopted with a prediction
horizon of 30 steps and a sampling time of 0.01 s. Simulations demonstrate accurate tracking
under active constraints, with computation times suitable for real-time implementation.
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1. INTRODUCCIÓN

Los Veh́ıculos Aéreos No Tripulados (UAVs, del inglés,
Unmanned Aerial Vehicles) de tipo multirrotor, como
los cuadricópteros, han demostrado ser plataformas al-
tamente versátiles para tareas de navegación autónoma
en ambientes estructurados y no estructurados. Gracias a
su agilidad, bajo costo relativo y facilidad de implementa-
ción, su uso se ha extendido en aplicaciones como inspec-
ción, monitoreo ambiental, cartograf́ıa aérea y transporte
ligero (Gupta et al., 2021; Telli et al., 2023).
Una de las capacidades más demandadas en estos sistemas
es el seguimiento preciso de trayectorias de referencia bajo
restricciones f́ısicas estrictas, como saturaciones en los
actuadores o ĺımites en la envolvente de operación. Estas
restricciones son inevitables en implementaciones reales,
donde tanto los actuadores como los sensores tienen ca-
pacidades finitas. En este contexto, el Control Predictivo
Basado en Modelo (MPC, por sus siglas en inglés) ofrece
una solución atractiva al permitir la incorporación expĺıci-
ta de restricciones en el diseño del controlador, además
de anticipar la evolución futura del sistema y optimizar el
desempeño bajo criterios definidos (Nguyen et al., 2021;
Kamel et al., 2017).
Sin embargo, el alto costo computacional asociado al
MPC tradicional representa una barrera importante para
su implementación en sistemas embebidos de tiempo real,

1 Este trabajo es financiado parcialmente por la Vicerrectoŕıa de
Investigación y Estudios de Posgrado, VIEP-BUAP con el proyecto
No.00593/2025. R.I. Vásquez-Cruz agradece a la SECIHTI por el
financiamiento de sus estudios de doctorado.

como los UAVs. Este desaf́ıo ha motivado el desarrollo
de variantes computacionalmente eficientes. Por ejemplo,
se han propuesto esquemas basados en MPC lineal con
observadores de perturbaciones para lograr seguimiento
sin error en presencia de modelos simplificados (Nguyen
et al., 2021), aśı como estrategias de MPC no lineal en
tiempo real mediante técnicas de multiple shooting y re-
solución iterativa de tipo SQP (Kamel et al., 2017). Otros
trabajos optan por aproximaciones expĺıcitas mediante
MPC paramétrico (Nguyen et al., 2021) o reducen la
complejidad mediante horizontes cortos combinados con
modelos de baja fidelidad. Asimismo, enfoques como el
Adaptive MPC y el Robust MPC permiten mitigar la
sensibilidad al modelo a costa de un incremento moderado
en el cómputo (Nguyen et al., 2021). En este contexto,
una alternativa particularmente eficiente es el Frugal Mo-
del Predictive Control (FMPC), propuesto en (Vásquez-
Cruz et al., 2025), el cual combina un modelo predictivo
simplificado con una técnica de estimación de perturba-
ciones mediante observadores tipo ESO (Extended State
Observer), y una parametrización del control que reduce
drásticamente la dimensión del problema de optimización
cuadrática.
El presente trabajo tiene como objetivo validar un esque-
ma de control predictivo frugal para el seguimiento de tra-
yectorias de un UAV multirrotor individual. Se considera
únicamente la dinámica traslacional del veh́ıculo, bajo
restricciones en el control (aceleración) y en la posición, lo
cual permite enfocarse en el desempeño del FMPC como
controlador de seguimiento en escenarios realistas.
El resto del art́ıculo está organizado de la siguiente forma.
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En la sección 2 se presenta de manera sucinta la estrategia
de control predictivo basado en modelo, el modelo ma-
temático de los cuadricópteros, aśı como el enunciado del
problema a resolver. La sección 3 presenta la formulación
y el diseño del control. La sección 4 muestra las simula-
ciones numéricas del sistema en lazo cerrado. Finalmente
en las sección 5 las conclusiones son enunciadas.

2. PRELIMINARES Y ENUNCIADO DEL
PROBLEMA

En esta sección se revisa de manera sucinta, la meto-
doloǵıa de control predictivo para sistemas LTI. Pos-
teriormente se presenta el modelo matemático del cua-
dricóptero lo que permite al final de la sección, hacer el
planteamiento del problema.

2.1 Control Predictivo

El Control Predictivo Basado en Modelo (MPC, por sus
siglas en inglés), también llamado control con horizonte
movible o deslizante, es una técnica que permite abor-
dar el control de sistemas dinámicos sujetos a restric-
ciones, mediante la solución recursiva de un problema
de optimización. Para sistemas lineales invariantes en el
tiempo (LTI), este problema puede plantearse como uno
cuadrático convexo, lo cual garantiza unicidad y eficiencia
computacional en la solución (Alamir, 2006).

Considérese un sistema LTI de la forma:

x(k + 1) = Ax(k) +Bu(k), (1)

donde x(k) ∈ Rn es el vector de estado y u(k) ∈ Rnu la
entrada de control. A partir de este modelo, se predice
la evolución futura del sistema durante un horizonte de
predicción N , generando la secuencia de entradas futuras:

ũ(k) ≜
(
u(k)⊤ u(k + 1)⊤ . . . u(k +N − 1)⊤

)⊤
. (2)

Para expresar de forma estructurada el mapa de predic-

ción, se define la matriz de selección Π
(nu,N)
j ∈ Rnu×Nnu

como:

Π
(nu,N)
j ≜

(
0nu×(j−1)nu

Inu 0nu×(N−j)nu

)
, (3)

la cual extrae la j-ésima entrada de la secuencia ũ(k), es
decir:

Π
(nu,N)
j · ũ(k) = u(k + j − 1). (4)

Utilizando estas matrices, la evolución del estado en el
instante futuro k + i puede expresarse como:

x(k + i) = Aix(k) +

i∑
j=1

Ai−jB ·Π(nu,N)
j · ũ(k), (5)

para todo i = 1, . . . , N .

Concatenando las expresiones anteriores para todos los
pasos del horizonte, se obtiene la forma matricial com-
pacta:

x̃(k) = Φx(k) +Ψũ(k), (6)

donde:

Φ ≜


A
A2

...
AN

 , (7)

Ψ ≜



1∑
j=1

A1−jBΠ
(nu,N)
j

2∑
j=1

A2−jBΠ
(nu,N)
j

...
N∑
j=1

AN−jBΠ
(nu,N)
j


. (8)

El objetivo de control se formaliza mediante un funcional
cuadrático del tipo:

J (ũ(k)) =

N∑
i=1

∥Crx(k + i)− yd(k + i)∥2Rw

+

N∑
i=1

∥u(k + i− 1)− ud∥2Qw
, (9)

dondeCr ∈ Rnr×n selecciona las salidas reguladas, yd(k+
i) es la trayectoria de referencia, y Rw y Qw son matrices
simétricas definidas positivas que ponderan los errores
de seguimiento y los esfuerzos de control, respectivamen-
te. Nótese que, al desarrollar la ecuación (9), aparece
un término constante que no se toma en cuenta en la
definición de la función de costo, ya que no afecta la
secuencia óptima de acciones buscada. El impacto de este
término seŕıa simplemente trasladar la función de costo
verticalmente sin cambiar el valor del argumento que la
minimiza (Alamir, 2006).

Para facilitar su tratamiento computacional, la función de
costo (9) puede escribirse en forma matricial como:

J(ũ(k)) =
1

2
ũ(k)⊤Hũ(k) + F(k)⊤ũ(k) (10)

donde la matriz Hessiana H y el vector de gradiente F(k)
se obtienen a partir de la expansión de la trayectoria
de estados y de la referencia futura. El problema de
control predictivo se plantea entonces como un problema
de optimización cuadrática con restricciones:

ũ⋆(k) = mı́n
ũ(k)

1

2
ũ(k)⊤Hũ(k) + F(k)⊤ũ(k),

sujeto a Aineqũ(k) ≤ Bineq(k), (11)

siendo ũ⋆ la secuencia óptima calculada en el instante k,
y donde las restricciones lineales Aineq y Bineq codifican
ĺımites en las entradas, las tasas de cambio o los estados
predichos (Alamir, 2006):

x(k + i) ∈ X , u(k + i− 1) ∈ U , ∀i = 1, . . . , N. (12)

Este esquema se ejecuta recursivamente en ĺınea: se re-
suelve (11) en cada instante k, se aplica únicamente la
primera entrada

uP(k) = Π
(nu,N)
1 ũ⋆(x(k)), (13)
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y se actualiza el estado para la siguiente iteración. Esta
estrategia de optimización en horizonte móvil, junto con
la capacidad de incorporar restricciones expĺıcitas, es uno
de los principales atractivos del MPC en aplicaciones
reales (Alamir, 2006).

2.2 Modelo del veh́ıculo

Este trabajo considera 2 marcos de referencia: Eb que
representa el sistema de coordenadas cuyo origen corres-
ponde al centro de masa del cuadricóptero y un marco
de referencia inercial Ef (ver Fig. 1). Por lo tanto, la
dinámica de movimiento traslacional y rotacional, está
descrita por:

ΣP :

{
ṗ = v

mv̇ = −mgefz +Rf
bTe

b
z

(14)

ΣR :

{
Ṙf

b = Rf
i [Ω

×]

JΩ̇ = −[Ω×]JΩ+ Γ
(15)

ΣM :
{
Jrω̇i = amωi + bmumi − κω2

i con i = {1, 2, 3, 4}
(16)

(
T
Γ

)
:=

 T
Γϕ

Γθ

Γψ

 =

 b b b b
−lb lb lb −lb
−lb lb −lb lb
−k −k k k


ω

2
1

ω2
2

ω2
3

ω2
4

 (17)

p = (x y z)⊤ y v = (ẋ ẏ ż)⊤ representan la posición
y velocidad, respectivamente, con respecto al marco de
referencia Ef ; gefz describe la dirección de la fuerza cons-
tante de gravedad, m la masa y T es la fuerza de empuje

en dirección ebz, mientras que Rf
b ∈ SO(3) es la matriz de

rotación que proyecta a los vectores expresados en Eb a
Ef . El vector de velocidad angular de Eb con respecto
a Ef pero expresado en Eb es denotado Ω, mientras
que [Ω×] corresponde a su matriz anti-simétrica, J es la
matriz de inercia y Γ es el vector de par, producto de la
combinación de las fuerzas generadas por cada motor (ver
(17)) y que es utilizado como control de orientación.
Finalmente, (16) representa la dinámica de los rotores
(hélice acoplada a un motor DC), siendo ωi la velocidad
ángular del i-ésimo rotor. Los parámetros am, bm, κ ∈ R
están en función de las caracteŕısticas eléctricas, mecáni-
cas y aerodinámicas de los rotores. umi representa el vol-
taje aplicado a cada motor. En particular, los parámetros
b y κ depende de la geometŕıa de la hélice y de la densidad
del aire.

Las ecuaciones (14)-(17) muestran la naturaleza del sis-
tema en cascada y cada subsistema experimenta tiempos
de respuesta diferentes, haciendo de forma natural una
separación de escalas de tiempos. Esta importante carac-
teŕıstica ha sido explotada en el desarrollo de estrategias
de control, tanto teóricas como las utilizadas en los pilotos
automáticos tales como los basados en la arquitectura

Figura 1. Marcos de referencia

Subsistema Tiempo de respuesta Frecuencia de muestreo

Rotor/ESC 0.05 s 1000 Hz
Orientación 0.5 s 200 Hz
Posición ≥ 1 s 50 Hz

Cuadro 1. Tiempo de respuesta y frecuencia
de muestreo en los diferentes niveles del cua-

dricóptero

betaflight o Px4 2 . Debido a esto, en la práctica, cada
subsistema es controlado de manera separada y a una
frecuencia de muestreo diferente, como se muestra en la
Tabla 1.

Observación 1. En este trabajo, solo las ecuaciones de
movimiento de traslación (14) son consideradas para el
diseño del control. Sin embargo, se presenta el modelo
completo puesto que es el utilizado en las simulaciones
presentadas posteriormente.

Observación 2. El diseño del control se realiza en un
contexto libre de perturbaciones. Sin embargo, en la
vida real existen perturbaciones externas (viento, fuerzas
aerodinámicas debidas a la interacción con superficies
cercanas, cargas acopladas, etc..). Aśı entonces, se espera
que el control diseñado, sea robusto.

2.3 Enunciado del problema

Tras el análisis del eṕıgrafe anterior, en este trabajo
proponemos una estructura de control jerárquica con
el control de empuje del rotor (motor-propela) en el
nivel bajo, el control de la dinámica de la orientación
en el nivel medio y el control de la posición en el
nivel alto. Aśı, el objetivo de este trabajo es desarrollar
una estrategia de control de posición basándose en la
técnica del control predictivo, que permita establecer las
siguientes restricciones en cada maniobra:

Aceleración mı́nima y máximas umin
x ≤ ux ≤ umax

x ,
umin
y ≤ uy ≤ umax

y , umin
z ≤ uz ≤ umax

z
Empuje máximo en cada maniobra: 0 ≤ T ≤ Tmax,
Restricción en la posición, i.e., xmin ≤ x ≤ xmax,
ymin ≤ y ≤ ymax , zmin ≤ z ≤ zmax

El problema de optimización cuadrática (QOP) aso-
ciado al control predictivo, debe ejecutarse con un
tiempo de cómputo Tc < Ts = 0,01s. Con la fina-
lidad de poder ser implementado posteriormente en
tiempo real.

2 https://betaflight.com/ y https://px4.io/
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A diferencia de enfoques clásicos como PID, LQR o
control no lineal, el esquema MPC permite incorporar de
forma expĺıcita restricciones en los estados, las entradas
y sus derivadas, lo cual es esencial en aplicaciones reales
con ĺımites f́ısicos estrictos; esta capacidad es una de las
principales ventajas que motivan su uso en este trabajo.

3. DISEÑO DEL CONTROL PREDICTIVO FRUGAL

En esta sección se desarrolla el diseño de control predic-
tivo frugal. El nombre frugal obedece a que debe ser un
control económico, con respecto a tiempo de cómputo,
capaz de ser implementado en tiempo real.
Considere las ecuaciones de movimiento de traslación
del veh́ıculo descrita por las ecuaciones (14). Defina el
siguiente vector de control intermedio

dRf
b e

b
z =

muP +mgefz

∥muP +mgefz∥
(18)

Observación 3. El vector uP será diseñado posterior-
mente utilizando la técnica de control predictivo, y repre-
senta un vector de aceleración deseada.

Observación 4. La matriz Rf
b (Q) que satisface la res-

tricción (18) representa una matriz de orientación desea-
da en el control de orientación (attitude control) y que
permite la estabilización de la dinámica rotacional dada
por las ecuaciones (15), mediante un control de orienta-
ción (Guerrero-Castellanos et al., 2011, 2021), capaz de

generar Γi tal que Rf
b → dRf

b cuando t→ ∞.

Sea T = ∥muP + mgefz∥ y sustituyendo (18) en (14) se
tiene

ṗ = v, v̇ = uP (19)

ahora se tienen los elementos para diseñar el resto del
control predictivo Frugal.

3.1 Modelo frugal

Defina el vector de estado como:

x(t) = (x(t) ẋ(t) y(t) ẏ(t) z(t) ż(t))
⊤ ∈ R6, (20)

y el vector de control como:

uP(t) = (ux(t) uy(t) uz(t))
⊤ ∈ R3, (21)

donde ux(t), uy(t), uz(t) representan las aceleraciones de-
seadas en cada eje cartesiano.

Aśı, el sistema (19) puede reescribirse como:

ẋ(t) = Acx(t) +BcuP(t), (22)

con matrices dadas por:

Ac =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 , Bc =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 . (23)

3.2 Discretización por retenedor de orden cero

Sea Ts > 0 el tiempo de muestreo. Aplicando un esquema
de discretización por retenedor de orden cero (ZOH), se
obtiene el modelo en tiempo discreto de la forma (1),
donde las matrices discretas se calculan como:

A = exp(AcTs), (24)

B =

∫ Ts

0

exp(Acτ) dτ Bc. (25)

3.3 Esquema predictivo

El modelo discreto permite predecir el comportamiento
del sistema a lo largo de un horizonte de predicción N .
La construcción del mapa predictivo en la forma:

x̃(k) = Φx(k) +Ψũ(k), (26)

se realiza siguiendo el procedimiento detallado en los
preliminares matemáticos, conforme al enfoque propuesto
por Alamir (2006).

En este trabajo, se consideran como estados regulados
y simultáneamente como estados restringidos las com-
ponentes de posición x(k), y(k), z(k). De ese modo, se
definen como la matriz de salidas reguladas y la de salidas
restringidas de la forma:

Cr = Cc =

(
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

)
. (27)

El objetivo del controlador predictivo es hacer que estas
posiciones sigan una trayectoria de referencia, sujeta a las
siguientes restricciones duras:

Variable Ĺımite inferior Ĺımite superior

x(k + i) −0,25m 0,5m
y(k + i) −0,5m 0,25m
z(k + i) 0m 0,8m

ux(k + i− 1) −2,6m/s2 2,6m/s2

uy(k + i− 1) −2,6m/s2 2,6m/s2

uz(k + i− 1) −2m/s2 2m/s2

Cuadro 2. Restricciones del sistema

3.4 Parametrización frugal de la entrada

Para reducir el número de variables de decisión sin com-
prometer el desempeño del controlador, se adopta una
parametrización frugal de la secuencia de control, con-
sistente en asumir que la entrada permanece constante
durante ciertos puntos del horizonte. Es decir, se conside-
ra:

ũ(k) = Πr q(k), (28)

donde q(k) ∈ Rnq es el nuevo vector de decisión reducido,
y Πr ∈ RNnu×nq es la matriz de parametrización que
define el perfil de la entrada futura a partir de un número
reducido de nodos.

Se define un horizonte de predicción de N = 30, con un
tiempo de muestreo de Ts = 0,01 s. Dado que el número de
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entradas de control es nu = 3, el número total de variables
de decisión en el esquema tradicional seŕıa Nnu = 90.
Para reducir esta carga computacional, se seleccionan dos
nodos de control: el primero en k = 0 y el segundo en
k = 15, lo que implica un total de nr = 2 nodos. En
consecuencia, el número de variables de decisión se reduce
a:

nq = nr · nu = 2 · 3 = 6. (29)

La matriz Πr se construye interpolando linealmente entre
los nodos definidos. En este caso, la entrada se mantiene
constante desde k = 0 hasta k = 14, y luego adopta un
nuevo valor constante desde k = 15 hasta k = 29. Esta
estructura puede representarse como:

ũ(k) =

{
q1(k), si i ∈ {0, . . . , 14},
q2(k), si i ∈ {15, . . . , 29}, (30)

De este modo, el costo se reescribe como:

J(q(k)) =
1

2
q(k)⊤Hrq(k) + F⊤

r q(k), (31)

donde las matrices reducidas están definidas como:

Hr ≜ Π⊤
r HΠr ∈ Rnq×nq , (32)

Fr(k) ≜ Π⊤
r F(k) ∈ Rnq . (33)

La minimización de J(q(k)) bajo restricciones se realiza
mediante esquemas iterativos frugales como el algoritmo
de gradiente con expansión, el cual garantiza convergencia
para funciones convexas y permite imponer restricciones
lineales a través de penalizaciones saturadas (Alamir,
2006).

Finalmente, dada la parametrización se tiene que

uP(k) = Π
(nu,N)
1 Πrq̃

⋆. (34)

En este trabajo se opta por aplicar el control predictivo
únicamente a la dinámica traslacional, asumiendo que
la regulación de la orientación es resuelta por un lazo
interno rápido. Esta decisión favorece una implementa-
ción computacionalmente eficiente, al tiempo que permite
incorporar restricciones expĺıcitas en la posición sin com-
prometer el desempeño del sistema.

4. SIMULACIÓN NUMÉRICA

La validación del esquema de control predictivo frugal
propuesto se llevó a cabo mediante simulaciones numéri-
cas en Matlab/Simulink, considerando un modelo in-
tegral del cuadricóptero (con masa de 0,536 kg) que
incorpora tanto las no linealidades aerodinámicas y elec-
trodinámicas del veh́ıculo como los efectos de retardo y
comunicación en lazo cerrado. La trayectoria de referencia
se definió como una maniobra tridimensional compuesta
por un movimiento circular en el plano horizontal y un
ascenso uniforme:

pd(t) =

(
0,5 sin(0,15 t)
0,5 cos(0,15 t)

0,007t

)
. (35)

Se impusieron restricciones sobre la posición y la acelera-
ción, según se detalla en secciones anteriores. La función
de costo utilizada en el problema cuadrático penaliza el
error de seguimiento de posición y el esfuerzo de control
mediante matrices de ponderación definidas como:

Qw = diag(40, 40, 40), Rw = diag(0,1, 0,1, 0,1). (36)

El algoritmo de optimización fue implementado mediante
un esquema iterativo tipo gradiente con expansión, resol-
viendo en ĺınea el problema reducido con seis variables.
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Figura 2. Evolución de la posición del cuadricóptero. Se
cumple el seguimiento de referencia respetando las
restricciones impuestas

En la Fig. 2 se aprecia que el veh́ıculo sigue la tra-
yectoria de referencia respetando las restricciones im-
puestas en todos los ejes. Entre los segundos 40 y 60,
delimitados por ĺıneas verticales discontinuas, se aplican
perturbaciones externas (véase Fig. 3), las cuales son
atenuadas eficazmente por el controlador, permitiendo la
reincorporación del sistema a la trayectoria deseada. En
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Figura 3. Evolución de las perturbaciones en los tres ejes

la Fig. 4 se visualiza la trayectoria del cuadricóptero en
tres dimensiones, con respecto al marco inercial, para una
mejor apreciación de su evolución en el espacio. Aun en
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Figura 4. Evolución de la trayectoria del cuadricóptero en
tres dimensiones

Número de variables de decisión Promedio de tiempo

6 552,66 µs
90 10,67 ms

Cuadro 3. Tiempo de cálculo del MPC con y
sin parametrización de la señal de control

presencia de perturbaciones, la Fig. 5 evidencia que las
señales de control permanecen dentro de las restricciones
especificadas. Finalmente, se comparan los enfoques MPC
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Figura 5. Evolución de las señales de control. Se respetan
las restricciones impuestas

con y sin parametrización del control, midiendo el tiem-
po de cómputo requerido en simulación. Los resultados
(Tabla 3) muestran una diferencia significativa, siendo
el tiempo promedio del enfoque convencional superior al
periodo de muestreo, lo que lo vuelve impráctico. Se efec-
tuó además una simulación sin restricciones en el estado,
calculando el ı́ndice de error integral cuadrático (ISE)
para evaluar la pérdida de desempeño, observándose una
diferencia del 15.33% entre ambos enfoques.

5. CONCLUSIONES

El esquema de Control Predictivo Frugal (FMPC) de-
sarrollado y validado en este trabajo demuestra ser una

Número de variables de decisión ISE

6 0.480116
90 0.406501

Cuadro 4. Comparación de ı́ndice de desem-
peño ISE para el seguimiento de trayectoria

sin restricciones de estado

alternativa viable y eficiente para el control de UAV tipo
cuadricóptero, donde es necesario cumplir con restriccio-
nes en el estado y en la entrada. Al emplear una para-
metrización que disminuye significativamente el número
de variables de decisión, se logra compatibilizar el diseño
con las limitaciones computacionales de las plataformas
embebidas. Los resultados de simulación confirman un se-
guimiento tomando en cuenta restricciones. Como trabajo
futuro, se plantea realizar la validación experimental en
plataformas reales.
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