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Abstract: This paper introduces an ultra-local model predictive current control (UMPCC)
for a permanent magnet synchronous motor (PMSM). The main objective of the ultra-local
model approach is to improve the robustness of the current control of the PMSM. Previous
works on ultra-local model techniques for the current control of a PMSM are designed based on
deadbeat control, which leads to a high current ripple due to the fast response of the controller.
This paper introduces a continuous UMPCC (C-UMPCC) to minimize the current ripple. In
the proposed approach, a continuous vector control is designed using the solution of an optimal
control tracking problem. Simulation results are presented to illustrate the proposed controller.
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1. INTRODUCTION

The permanent magnet synchronous motor (PMSM) is
widely used in industrial applications due to its compact
size and high power density (Krishnan (2017)). Typically,
field-oriented control (FOC) is used in servo drives for
PMSM (Llorente (2020)). In FOC, the stator current and
speed of the motor are controlled in a cascade loop using
proportional-integral (PI) controllers. Since the PMSM is
non-linear, the performance of the drive can be degraded
with parameter changes or external disturbances when
using PI controllers (Jia et al. (2019)).

To deal with the non-linear dynamics of the PMSM,
model predictive control (MPC) has been widely used
(Rodriguez et al. (2022)). In MPC, the PMSM model is
used to predict the dynamic response of the current or
the speed. Based on the response, the control action is
obtained based on the minimization of a cost function.
As the name implies, MPC is highly dependent on the
mathematical model of the PMSM. Therefore, changes in
machine parameters, external disturbances, or unmodeled
dynamics will deteriorate the performance of the MPC
(Zhang et al. (2023)).

To add robustness to internal (parameter variation) and
external disturbances in PMSM control, the model-free
MPC (MF-MPC) is an alternative to the conventional
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MPC (Wang et al. (2025)). MF-MPC is based on an ultra-
local model where the internal and external disturbances
are lumped. This results in a first-order system with an
unknown term consisting of lumped disturbances (Fliess
and Join (2013)). Hence, Ultra-local MPC (UL-MPC)
results in an observer-based controller, where an extended
state observer (ESO) is used to estimate the lumped
disturbance, and then the control action is calculated
based on this estimation.

Several works have been presented for the UL-MPC. In
Liu et al. (2025), a MF-MPC for the current control of
a PMSM is introduced. In this work, a modified ESO for
harmonic disturbance suppression in combination with a
deadbeat predictive current control (DPCC) is presented.
In Li et al. (2023), a finite control set MPC (FCS-MPC)
for the current control of a PMSM is introduced. In there,
a Kalman filter is used to estimate the lumped distur-
bance using an augmented system model. In Mousavi
et al. (2022), a FCS-MPC for the current control of an
induction motor is proposed. In this work, the estimation
of the lumped disturbance is based on an integral sliding
mode observer. In Davari et al. (2024), the Kalman filter
is used as a compensation for the measurement error
for the MF predictive current control of an Induction
Motor. In this manuscript, the Kalman filter is used as a
disturbance observer (DOB) using an ultra-local model.
In Zhang et al. (2021), an ESO based on an ultra-local
model for the predictive current control of a PMSM is
introduced. In this work, a deadbeat control is formulated
for the stator current regulation of the PMSM.
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In this paper, a robust ultra-local model predictive cur-
rent control (UMPCC) for a PMSM is presented. The
proposed method uses the Kalman filter as a DOB for the
estimation of the lumped disturbance in the current loop.
Then, the estimated disturbance is used to formulate a
continuous UMPCC (C-UMPCC). The solution of the
proposed C-UMPCC is obtained using a batch approach,
which results in the optimal voltage control to be applied
in the PMSM. This results in a lower current ripple
of the machine in comparison with previous methods.
Simulation results are presented to illustrate the proposed
methodology.

2. CONVENTIONAL ESO-BASED UMPCC

2.1 PMSM mathematical model and Conventional DPCC

In this paper, a surface PMSM is considered. In the d− q
reference frame, the dynamics of the speed and current
of the PMSM are given by Krishnan (2017):

d
dtωm = 1

J (Me −ML) (1)

Me =
3
2pψf isq (2)

d
dt id = −Rs

Ls
id + ωeiq +

1
Ls
ud, (3)

d
dt iq = −Rs

Ls
iq − ωeid − ωeψf

Ls
+ 1

Ls
uq, (4)

where J is the rotor inertia, Me,L is electromagnetic
torque and the load torque respectively, p is the pair
poles, id,q and ud,q are the stator currents and voltages
respectively, Rs and Ls are the stator resistance and
inductance respectively, ωe is the electrical speed, ωm is
the mechanical speed, and ψf is the flux linkage of the
permanent magnets of the rotor. Since MPC is formulated
in the discrete-time domain, the continuous-time model
of the PMSM is discretized based on the Euler method;
hence, the discrete mathematical model of the dynamics
of the current of the PMSM is given by:

idk+1
=

(
1− Ts

Rs

Ls

)
idk + Ts

(
ωek iqk + 1

Ls
udk

)
, (5)

iqk+1
=

(
1− Ts

Rs

Ls

)
iqk + Ts

(
−ωek idk − ωek

ψf

Ls
+ 1

Ls
uqk

)
,

(6)

where Ts is the sampling time, and the subindex k denotes
the time step. For the system (5)-(6), the reference
voltage vector of conventional DPCC can be obtained
following a deadbeat control approach and is given by
Liu et al. (2025):

udk = Ls

Ts

[
i∗d −

(
1− Ts

Rs

Ls

)
idk − Tsωek iqk

]
, (7)

uqk = Ls

Ts

[
i∗q −

(
1− Ts

Rs

Ls

)
iqk − Ts

(
ωek idk − ωek

ψf

Ls

)]
,

(8)

where i∗d,q are the reference currents.

2.2 Conventional ESO-Based MFPCC

Conventional DPCC requires accurate information about
the PMSM parameters for appropriate operation. Under

parameter mismatch, the current prediction is affected,
resulting in a current tracking error and deterioration of
the dynamic performance. An ultra-local model is used to
add robustness against parameter variations. Then, the
ultra-local model of the current dynamics of the PMSM
is given by Zhang et al. (2021); Liu et al. (2025):

d
dt id = bdud + fd, (9)
d
dt iq = bquq + fq, (10)

where bd,q are the control gains respectively, and can
be selected as bd = bq = 1/Ls; fd,q are d − q lumped
disturbances respectively. fd,q can be written as:

fd = −Rs

Ls
id + ωeiq + f ′d, (11)

fq = −Rs

Ls
iq + ωeid − ωeψf

Ls
+ f ′q, (12)

where f ′d,q are the unmodeled disturbances of the system.

The lumped disturbance in (9) - (10) is unknown but can
be estimated using a DOB. For the system (9) - (10), the
ESO is given by Zhang et al. (2021):

d
dt îd = bdud + f̂d + β1

(
id − îd

)
,

d
dt îq = bquq + f̂q + β1

(
iq − îq

)
,

d
dt f̂d = β2

(
id − îd

)
,

d
dt f̂q = β2

(
iq − îq

)
,

(13)

where îd,q and f̂d,q are the estimation of current and
lumped disturbance, respectively; β1,2 are the feedback
gains of the observer and can be selected as β1 = 2ω0

and β2 = ω2
0 , where ω0 is the bandwidth of the ESO. ω0

can be selected according to pole location as in Zhang
et al. (2021).

The conventional ESO-Based MFPCC is based on the
ultra-local model of the PMSM and the ESO, hence, the
discrete-time approximation of (9) and (10) is obtained
using the Euler method:

idk+1
= idk + Ts (bdudk + fdk) , (14)

iqk+1
= iqk + Ts (bquqk + fqk) . (15)

Similarly, the discrete-time approximation of the ESO
given by (13) is given by:

îdk+1
= îdk + Ts

[
bdudk + f̂dk + β1

(
idk − îdk

)]
, (16)

îqk+1
= îqk + Ts

[
bquqk + f̂qk + β1

(
iqk − îqk

)]
, (17)

f̂dk+1
= f̂dk + Tsβ2

(
idk − îdk

)
, (18)

f̂qk+1
= f̂qk + Tsβ2

(
iqk − îqk

)
. (19)

Finally, the reference voltage vector is obtained using the
estimated disturbance and the deadbeat principle used in
(7) and (8) as:

udk =
1

Tsbd

[
i∗d − idk − Tsf̂dk

]
, (20)

uqk =
1

Tsbq

[
i∗q − iqk − Tsf̂qk

]
. (21)
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Note that the settling time in deadbeat control depends
on the sampling time. Small sampling times lead to a
small settling time at the expense of a high control signal.
Therefore, special attention must be paid to limit the
control action within the operating voltage of the PMSM
used.

3. CONTINUOUS UMPCC

An alternative to design the control action using the
ultra-local PMSM model is to use a continuous MPC.
Rather than using a single-step prediction, in C-UMPCC,
a prediction is performed over a finite horizon, and a
trajectory control is designed. The main advantage of the
C-UMPCC is that the response of the control action is
tuned by a weighting factor in the cost function. The
proposed control is discussed in the following sections.

3.1 DOB-Based Kalman filter

One of the problems with linear observers like those
introduced in Liu et al. (2025); Zhang et al. (2021) is
the sensitivity to measurement error and noise. Deter-
mining the feedback gains commonly results in a trade-
off between convergence and sensitivity. As introduced in
Davari et al. (2024), the Kalman filter can be used as a
DOB. Using (14) and (15), the PMSM ultra-local model
is rewritten as:

xk+1 = Gxk +Huk +Bdddk,

yk = Cxk,
(22)

where

C = G =

[
1 0
0 1

]
, H =

[
Tsbd 0
0 Tsbq

]
, Bdd =

[
Ts 0
0 Ts

]
,

xk = [ idk iqk ]
T
, uk = [ udk uqk ]

T
, dk = [ fdk fqk ]

T
.

To estimate the disturbances, the following augmented
system is used Li et al. (2023):

x̄k+1︷ ︸︸ ︷[
xk+1

dk+1

]
=

A︷ ︸︸ ︷[
G Bdd
0 I

] x̄k︷ ︸︸ ︷[
xk
dk

]
+

B︷ ︸︸ ︷[
H
0

]
uk,

yk = [C 0 ]︸ ︷︷ ︸
Co

[
xk
dk

]
.

(23)

Using (21), the computation procedure for the estimation
of the disturbance based on the standard Kalman filter
is given as follows (Simon (2006)):

Rewriting (21) in the standard form of the Kalman
filter, and given the following system:

x̄k = Ak−1x̄k−1 +Bk−1uk−1 + wk−1,

yk = Cok x̄k + vk,

E
(
wkw

T
j

)
= Qkδk−j ,

E
(
vkv

T
j

)
= Rkδk−j ,

E
(
wkv

T
ȷ

)
= 0,

(24)

δk−j =

{
1 k = j
0 k ̸= j,

with initial conditions described as:
ˆ̄x+0 = E (x̄0) ,

P+
0 = E

[(
x̄0 − ˆ̄x+0

) (
x̄0 − ˆ̄x+0

)T ]
.

(25)

For every k = 1, 2, · · · the computation procedure of
the standard Kalman filter is given by:

P−
k = Ak−1P

+
k−1A

T
k−1 +Qk−1,

Kk = P−
k C

T
ok

(
CokP

−
k C

T
ok

+Rk
)−1

,

ˆ̄x−k = Ak−1 ˆ̄x
+
k−1 +Bk−1uk−1,

ˆ̄x+k = ˆ̄x−k +Kk

(
yk − Cok ˆ̄x

−
k

)
,

P+
k = (I −KkCok)P

−
k (I −KkCok)

T
+KkRkK

T
k .
(26)

in (24)-(26), Q and P denote covariance matrices of
the system and measurement noise, respectively; ˆ̄xk =

[x̂k, d̂k]
T is the estimation of the extended state x̄k;

ˆ̄x−k , ˆ̄x
+
k are the a priori and a posteriori estimates of

the extended state, respectively; P−
k , P

+
k are the a priori

and posteriori covariances of the measurement noise,
respectively; and Kk is the Kalman gain.

3.2 Continuous UMPCC design

The objective of the C-UMPCC is to design a trajectory
control to solve a reference tracking problem. The idea
behind this proposal is similar to that introduced in Li
et al. (2023). We assume that the desired reference rp
and the estimated disturbance d̂k are constant over a
prediction of finite horizon N . Then, the current reference
of the PMSM is given by:

RTp =

N︷ ︸︸ ︷
[ I2 I2 · · · I2 ] rp, rp = [i∗d, i

∗
q ]
T , (27)

Now, considering the reference vector and the estimation

of the disturbance d̂k, the following optimal control
problem is introduced:

J⋆j (xj) = min
Uj

N−1∑
k=j

(r − yk)
T
Qo (r − yk) + uTkRouk

subject to

xj = xk,

xk+1 = Gxk +Huk +Bdddk, k = 0, ..., N − 1

dk+1 = dk,

yk = Cxk,
(28)

where Uj =
[
uTk uTk+1 u

T
k+2 · · · uTk+N−1

]T
is the deci-

sion vector containing all the future inputs.Qo = QTo ≥ 0;
Ro = RTo > 0; are weighting matrices of appropriate
dimensions. Qo = QTo ≥ 0; Ro = RTo > 0. Qo is a matrix
that penalizes deviation from the reference, Ro is a matrix
that penalizes the control action. For long prediction
horizons, small values in Qo and Ro results in an under-
penalized deviation of the tracking error and control effort
over time. Moreover, special attention is needed to scale
properly Qo and Ro and avoid ill-conditioned matrices.
The solution to the problem introduced can be obtained
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by using the gradient. To this end, let us introduce the
following variables:

Y =


yk
yk+1

...
yk+N

 , Sy =


C
CG
...

CGN

 , Dj =


dk
dk+1

...
dk+N−1

 ,

Sr =


0 0 0 · · · 0
CH 0 0 · · · 0
CGH CH 0 · · · 0

...
...

...
. . .

...
CGN−1H CGN−2H CGN−3H · · · CH

 ,

Sd =


0 0 0 · · · 0

CBdd 0 0 · · · 0
CGBdd CBdd 0 · · · 0

...
...

...
. . .

...
CGN−1Bdd CG

N−2Bdd CG
N−3Bdd · · · CBdd

 ,

Q̄ =


Qo 0 · · · 0
0 Qo · · · 0
...

...
. . . 0

0 0 · · · Qo

 , R̄ =


Ro 0 · · · 0
0 Ro · · · 0
...

...
. . . 0

0 0 · · · Ro

 .
By using these definitions, the minimum of the problem
introduced in (26) is given by:

∇U(j)Jj (xj) =(
Rp − Syxk − SdDj

)T
Q̄
(
Rp − Syxk − SdDj

)
− 2UTj S

rT Q̄
(
Rp − Syxk − SdDj

)
+ UTj

(
SrT Q̄Sr + R̄

)
Uj = 0.

(29)
Finally, the optimal trajectory control U⋆j is given by:

U⋆j =
(
SrTQSr +R

)−1
SrTQ

(
Rp − Syxk − SdDj

)
,
(30)

and using the principle of receding horizon control, the
optimal control action u⋆k is:

u⋆k =

N︷ ︸︸ ︷
[ I2 02 · · · 02 ]U

⋆
j . (31)

4. SIMULATION RESULTS

To evaluate the performance of the proposed methodol-
ogy, the simplified scheme of the proposed control shown
in Fig. 1 is implemented in Matlab/Simulink. The PMSM
used in the simulation is a Trinamic motor model QBL
4208-100-04-025. The parameters for the simulation of
the motor are taken from the manual or estimated using
Bobek (2013) and are listed in Table 1. As shown in
Fig. 1, the speed of the motor is controlled using a PI
control, then, using the output as the i∗q reference, and
by setting the i∗d = 0, the ultra-local MPCC is calculated.
The voltages obtained using the ultra-local MPCC are
converted to a PWM signal through the SV-PWM. SV-
PWM is used because it leads to the maximum utilization

d/dt

SV-PWM

UDC

Su, 
Sv, 
Sw

PMSM

P-1

C
Clarke

P

UDC C

Su+ Sv+ Sw+

Su- Sv- Sw-

U

V

W

DC link

Voltage Source Inverter

Du+ Dv+ Dw+

Du- Dv- Dw-

,
i
  , ,u v w

i

m


m


,
u
 

PI Speed 
Control  

*
m



Ultra Local MPCC

p

*
q
i

Park

,d q
i

*
d
i

e


d
u

q
u

e





,d q
i

0

DOB based Kalman 
Filter

1z

C-UMPCC

( 1)
,q
k

d
u 

,
ˆ
d q
i

,

ˆ
d q
f

Fig. 1. Simplified block diagram of the C-UMPCC.

Table 1. Parameters of the PMSM

24V , 3-Φ, PMSM

Parameter value Parameter value

MLN 0.25 Nm p 4

Rs 0.1867 Ω Ωnom 4000 RPM

Lsd 0.36 mH Lsq 0.36 mH

ψPM 0.006 V s iN 6.95 A

J 96 · 10−6 kgm2

of the DC-link voltage and a reduced amount of current
harmonics (Llorente (2020)).

The parameters used in the simulation are as follows: the
solver chosen is 4th order Runge Kutta, the sampling
time for the current loop is set to Ts = 100µs, and
for the speed loop it is set to Ts = 1ms. Pole location
is used for the PI gains of the speed loop, resulting
in Kp = 0.0824 and Ki = 0.000897. The parameters
of the Kalman filter are: Q = diag(10, 10, 30e3, 30e3);
R = diag(10, 10), P+

0 = diag(1e5, 1e5, 1e5, 1e5). The pa-
rameters of the C-UMPCC are: N = 10, Qo = diag(8, 8)
and Ro = diag(0.2, 0.2). For the power inverter, a switch-
ing frequency of 20 kHz is used. For all simulations, the
disturbances defined by (9) and (10) with f ′d,q = 0 are
used as a reference for the Kalman filter estimation. A
comparison with the control scheme introduced in Zhang
et al. (2021) is presented. For this simulation, the band-
width of the ESO ω0 is selected as ω0 = 300 rad/s.

In the simulation, both controllers are set to follow the
reference speed with a variable load torque. The speed
reference is set to 100 rad/s at t = 0.1s, and at t = 1.5s
is set to -100 rad/s. The load torque is set as follows: in
t=0s a TL = 0Nm, in t=0.7s a TL = 0.25Nm, in t=1.2s
a TL = 0Nm, in t=2.6s a TL = −0.25Nm, and in t=3s
a TL = −0.1Nm. The reference value for the id current
is set to zero. To simulate that a load is attached to the
PMSM rotor, a rotor inertial load is added in simulations;
hence, the rotor inertia load is set to 5J .

The simulation results for the speed control are shown
in Figs. 2 and 3 for the ESO-Based MFPCC and for
the Kalman-Based C-UMPCC, respectively. The results
show that the speed is successfully controlled despite the
simulated rotor load on the shaft, which only leads to a
larger settling time. Similarly, the disturbances caused by
the load torque are mitigated in the speed response for
both controllers. There is no significant difference in the
speed response of both controllers, since the same speed
controller is used and the current control does not affect
the speed performance. In the current control, it can be
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Fig. 2. ESO-Based DBMPC: controlled variables. From
top: id current, iq current, mechanical speed

Fig. 3. Kalman-Based C-UMPCC: controlled variables.
From top: id current, iq current, mechanical speed

seen that the iq current amplitude changes according to
the the applied load torque. Furthermore, the Kalman-
Based C-UMPCC results in lower current ripple in com-
parison with the ESO-Based MFPCC. Notice that the
dynamic response is similar using the proposed Kalman-
Based C-UMPCC compared to the ESO-Based MFPCC,
and that the iq current for the proposed Kalman-Based
C-UMPCC is rapidly changed to mitigate the effect of
disturbances on the speed response.

To evaluate the performance numerically, the root mean
square error (RMSE) of the tracking is presented in Table
2. In this evaluation, the DOB-Based Kalman filter is
combined with the MFPCC, and is referred to as Kalman-
Based MFPCC. For current control, the best performance
is obtained using the Kalman-Based C-UMPCC. It is
important to note that when the MFPCC is used, a
similar performance is obtained based on the ESO or
the Kalman filter; therefore, a significant difference is not
obtained when a difference observer is used. However,
a better performance is obtained when the control is
obtained based on the proposed approach.

The estimation of the variables of the extended state
is shown in Fig. 4 and Fig. 5 for the ESO and the
DOB-Based Kalman, respectively. It can be seen that the
estimation of the currents is successfully obtained. In the
ESO results, high noise is obtained for the current esti-
mation. This noise may be caused by the noise introduced
due to power electronics. For the DOB-based Kalman, a

Fig. 4. DBMPC-ESO: observed variables. From top: id
current, iq current, fd, fq

Fig. 5. C-UMPCC-Kalman DOB: observed variables.
From top: id current, iq current, fd, fq

Table 2. Evaluation of the RMSE tracking of
the control schemes

Root Mean Square Error

ωm id iq
ESO-Based MFPCC 56.42959 0.36147 0.30176

Kalman-Based MFPCC 56.52009 0.36037 0.30362

Kalman-Based C-UMPCC 56.62802 0.30593 0.27759

Table 3. Evaluation of the RMSE estimation
of the disturbance observers

Root Mean Square Error

îd îq f̂d f̂q
ESO 0.9561 1.0391 761.3122 1711.2953

DOB-Based Kalman 0.1129 0.0993 728.0646 2049.3100

better performance is obtained in the current estimation.
For the disturbance estimation, a similar performance is
obtained for the ESO and the DOB-Based Kalman. A
slightly higher ripple is observed in the ESO estimation.
In both observers, a steady-state error is obtained for the
disturbance estimation. This issue needs to be investi-
gated further.

Finally, an evaluation of the RMSE estimation is pre-
sented in Table 3. The results show that the current
estimation error is smaller for the DOB-Based Kalman in
comparison with the ESO. In the case of the disturbance
fd, similar results are obtained for both observers; how-
ever, for the fq disturbance, a smaller error is obtained
for the ESO in comparison with the DOB-Based Kalman.
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For both controllers, robustness of the current control
depends upon the estimation of the disturbance; however,
as shown in the simulation results, an estimation error
leads to accurate performance of the drive. Mismatches
in disturbance estimation will lead to a steady-state error
in the system. Hence, for the proposed control scheme,
an accurate estimator is needed. In the context of power
electronics, the Kalman filter leads to a better estimation
by considering the ripple introduced by the electronics
commutation as noise; however, in this work, the statis-
tics of the noise are unknown, and the Kalman filter
parameters are designed by trial and error. Even though
tuning the DOB-Based Kalman is time-consuming, the
best results are obtained with its application in the pro-
posed C-UMPCC.

The proposed C-UMPCC can be extended to other types
of ac machines without requiring significant changes in
its design. A drawback of the proposed control scheme is
the computational cost introduced by the Kalman filter,
in principle, the computational cost of the Kalman filter
is more expensive in comparison with the ESO. In Simon
(2006), an alternative formulation of the original Kalman
filter is introduced to reduce the computational burden,
however, when using this alternative formulation, special
attention is needed to avoid divergence issues in the
Kalman filter.

5. CONCLUSION

In this paper, a Kalman-based C-UMPCC is introduced.
The proposed control scheme is based on the idea of
active disturbance rejection control; hence, a DOB-Based
Kalman estimator is used. The DOB-Based Kalman esti-
mates the lumped disturbance of an ultra-local model for
a PMSM drive, then the estimated disturbance is used
in an optimal control problem to determine the optimal
control action to be applied to the motor. In comparison
with the previous work of ESO-Based MFPCC, the pro-
posed control scheme results in lower current ripple in the
machine. Despite the steady-state estimation error, the
proposed methodology is capable of successfully control
the currents of the machine. Future work is intended to
increase the performance of the disturbance estimation
and its application and verification in an experimental
setup.
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