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Abstract: This article addresses the design of an observer-based controller for a generalized
model of power converters, whose structure is a PCH system. The system structure is leveraged
to design a controller, an observer, and their interconnection, as the proposed schemes preserve
the structure. Additionally, the convergence proof of the proposed scheme is presented. Finally,
to validate the results, a numerical evaluation is shown through a simulation of Boost converter.
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1. INTRODUCCIÓN

Una gran cantidad de sistemas f́ısicos de distinta natu-
raleza pueden ser representados por un Sistema Hamil-
toniano Controlado por Puerto (PCH, por sus siglas en
inglés). Esta estructura es de interés ya que brinda ciertas
bondades para el diseño de esquemas de control y obser-
vación los cuales aprovechan las propiedades esculturales
en el análisis de convergencia de dichas propuestas. Al-
gunos esquemas de observación propuestos para sistemas
PCH y que además preservan la estructura se pueden
encontrar en la literatura, por ejemplo en (Granados-
Salazar et al., 2024) y (Pfeifer et al., 2021), los cuales
siguen diferentes metodoloǵıas de diseño y tipos de no
linealidades diferentes. También está el caso de (Rojas
et al., 2025) en el cual se presenta un observador para
sistemas PCH cuyo hamiltoniano es cuadrático. En (Zen-
fari et al., 2022) se presenta un esquema de observación
que preserva la estructura de un sistema PHC. En el
caso de controladores, también hay esquemas propuestos
los cuales preservan la estructura de un sistema PCH.
Por ejemplo, (Yaghmaei and Yazdanpanah, 2017) basa
su diseño en la teoŕıa de contracción. Adicionalmente,
existen metodoloǵıas generales de diseño para clases es-
pecificas de sistemas PCH como la mostrada en (Ramos-
Garcıa et al., 2021), donde se aprovechan propiedades
estructurales.

En ocasiones en los sistemas dinámicos la medición com-
pleta del estado no está disponible o la variable de interés
no es posible de medir debido a diversas causas. En ese
sentido se han propuesto esquemas de control basado en
observador tales como el control sensorless para motores
en (Shah et al., 2014), (Ibarra-Rojas et al., 2004) y para
convertidores (He et al., 2022).

El desarrollo de este trabajo se centra en los convertidores
de potencia ya que admiten una representación de un
sistema PCH y han sido reportados modelos generalizados
de esta clase de circuitos cuya estructura es un sistema
PCH. De manera general, para estos dispositivos existen
problemas abiertos tal como el caso del control basado
en observador, esto debido a la dificultad que se presenta
en algunas ocasiones de disponer de mediciones debido
a limitaciones tecnológicas (Crescentini et al., 2022).
Aśı, dadas las diferentes aplicaciones de importancia que
estos tienen, es también de suma importancia proponer
esquemas de control basados en observadores de estados.

El propósito principal de este art́ıculo es desarrollar un
esquema de control basado en observador para conver-
tidores de potencia. Esta propuesta surge ante la imposi-
bilidad práctica de medir directamente ciertas variables
en estos sistemas ya sea voltaje o corriente. Adicional-
mente, el art́ıculo presenta pruebas formales de conver-
gencia estableciendo qué propiedades se deben satisfacer
para alcanzar un objetivo de control. Algo importante a
destacar es el hecho que el usar esquemas que preservan
la estructura PCH hace que sea más eficiente el analizar
las propiedades que los sistemas de control exhiben.

Este art́ıculo se organiza de la siguiente manera: en la
Sección 2 se muestra el modelo matemático generalizado
de los convertidores de potencia, aśı como cada elemento
que compone dicha estructura. La Sección 3 muestra
de manera detallada el diseño del esquema de control
propuesto indicando las condiciones a satisfacer cada uno
de sus elementos. La Sección 4 contiene la evaluación
numérica de los resultados obtenidos en la Sección 3, con-
siderando como ejemplo ilustrativo el convertidor Boost.
Finalmente en la Sección 5 se presentan las conclusiones
del trabajo desarrollado.
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2. MODELO GENERAL

En esta sección se presenta el modelo PCH general-
izado de los convertidores de potencia estudiados en este
trabajo, el cual fue reportado en (He et al., 2022). Se
presentan las principales propiedades del modelo para
después realizar el diseño del esquema de control basado
en observador sobre esta estructura.

Considere el modelo generalizado de convertidores de
potencia CD-CD, el cual está dado por

ẋ =

(
J0 +

m∑
i=1

Jiui −R

)
Qx+

(
G0 +

m∑
i=1

Giui

)
E (1)

donde los estados del sistema x ∈ Rn son flujos en
los inductores ϕ y cargas en los capacitores q, mientras
Ji = −J⊤

i ∈ Rn×n y R(x) = R(x)⊤ ≥ 0 ∈ Rn×n son las
matrices de interconexión y disipación, respectivamente.
Además Gi ∈ Rn×m es la matriz de entradas y ui ∈ Rm

representa el encendido y apagado de los interruptores.

Para esta representación, el Hamiltoniano asociado es una
función cuadrática de la forma

H(x) =
1

2
x⊤Qx (2)

con Q = Q⊤ ∈ Rn×n una matriz definida positiva cuyas
entradas son las inductancias y capacitancias del sistema.
Es decir

Q =

diag
{

1

L1

}
0

0 diag

{
1

Ci

}


Para este modelo se considera como salida a

y =

(
G0 +

m∑
i=1

Giui

)⊤

Qx (3)

con la cual se define un mapeo pasivo desde la entrada E.

3. DISEÑO DEL CONTROL BASADO EN
OBSERVADOR

En esta sección se aborda el diseño del esquema de obser-
vación, haciendo énfasis en cada uno de los elementos que
lo componen, las propiedades que deben satisfacer cada
uno en su diseño y también las propiedades que deben
satisfacer en conjunto para garantizar la convergencia a
cero tanto del error de control como el error de obser-
vación al realizar la interconexión que da como resultado
un control basado en observador.

3.1 Controlador

En esta sección se detalla el diseño del controlador para
el modelo general de los convertidores. A partir de la
obtención de la dinámica del error se diseña una retroal-
imentación de estados con el cual se garantiza la conver-
gencia a los estados deseados.

Considere (1) entonces la dinámica admisible para el
modelo está dada por

ẋ⋆ =

(
J0 +

m∑
i=1

Jiui⋆ −R

)
Qx⋆ +

(
G0 +

m∑
i=1

Giui⋆

)
E

(4)
donde x⋆ son los estados deseados.

Dinámica del error Definiendo el error de control como
e = x − x⋆, y con las trayectorias admisibles dadas por
(4) la dinámica del error es

ė=

(
J0 +

m∑
i=1

Jiui⋆ −R

)
Qe+

m∑
i=1

(JiQx⋆ +GiE)ũi

Realizando la manipulación algebraica de los elementos y
a modo de simplificar la notación se expresa al siguiente
término como

m∑
i=1

(JiQx⋆ +GiE)ũi = B(x⋆)ũ

De manera simplificada, la dinámica del error toma la
forma

ė =

(
J0 +

m∑
i=1

Jiui⋆ −R

)
Qe+B(x⋆)ũ (5)

Diseño del controlador Sea (5) la dinámica del error. Se
propone como función candidata de Lyapunov a

V (e) =
1

2
e⊤Qe (6)

Al obtener la derivada de esta función a lo largo de las
trayectorias de (5) se tiene que

V̇ (e) = e⊤Qė

= e⊤Q

([
J0 +

m∑
i=1

Jiui⋆ −R

]
Qe+B(x⋆)ũ

)
≤−e⊤QRQe+ e⊤QB(x⋆)ũ (7)

Teniendo como grado de libertad a ũ, se define como

ũ = −kB⊤(x⋆)Qe (8)

donde k ∈ R+ es la ganancia de control. Para garantizar
convergencia del esquema se realiza el análisis como se
muestra a continuación.

Sustituyendo (8) en (7), se tiene

V̇ (e) =−e⊤QRQe− e⊤QB(x⋆)kB
⊤(x⋆)Qe

=−e⊤Q(R+B(x⋆)kB
⊤(x⋆))Qe (9)

Para garantizar la estabilidad asintótica del origen e = 0,
basta con que se satisfaga

R+B(x⋆)kB
⊤(x⋆) > 0 (10)

para todo x⋆ acotado. Aśı, se selecciona k de tal modo
que se satisfaga la condición presentada.
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3.2 Observador

En esta sección se aborda el diseño del esquema de obser-
vación para el modelo general de convertidores presentado
en la Sección 2. Este diseño se basa en la metodoloǵıa
presentada en Rojas et al. (2025) y en un caso particular
en Rojas et al. (2021), el cual es un observador de orden
completo que además preserva la estructura de un sistema
PCH. El observador es una copia de la dinámica del sis-
tema, adicionando un término de corrección que permite
garantizar la convergencia del error de observación.

Considere el modelo (1). El observador propuesto tiene la
forma

˙̂x =

(
J0 +

m∑
i=1

Jiui −R

)
Qx̂+

(
G0 +

m∑
i=1

Giui

)
E+

+ L(y − ŷ) (11)

ŷ =

(
G0 +

m∑
i=1

Giui

)⊤

Qx̂ (12)

donde x̂ son los estados estimados y L ∈ R1×n es la
ganancia del término de corrección, el cual se puede
escribir como

L(y − ŷ) = L

(
G0 +

m∑
i=1

Giui

)⊤

Qx̃ (13)

Dinámica del error Para obtener la ecuación que de-
scribe el comportamiento dinámico del error de obser-
vación, considere la dinámica del sistema (1) y el obser-
vador de estados (11). Si se define al error de observación
como x̃ = x− x̂, la dinámica del error toma la forma

˙̃x =

J0 +

m∑
i=1

Jiui −R− L

[
G0 +

m∑
i=1

Giui

]⊤Qx̃

(14)
A partir de la cual es posible establecer propiedades de
convergencia del esquema propuesto.

Prueba de convergencia Para analizar las propiedades
de convergencia del esquema de observación se consid-
era la dinámica del error de observación (14) y se hace
el análisis usual de proponer una función candidata de
Lyapunov (el Hamiltoniano en este caso) y se determi-
nan las condiciones bajo las cuales se garantiza que el
punto de equilibrio x̃ = 0 de la dinámica del error es
asintóticamente estable.

Para analizar la estabilidad de x̃ = 0 se propone

V (x̃) =
1

2
x̃⊤Qx̃ (15)

cuya derivada a lo largo de las trayectorias del sistema es

V̇ (x̃) ≤ x̃⊤Q

(
R+ L

[
G0 +

m∑
i=1

Giui

])
Qx̃ (16)

Bajo estas condiciones, para garantizar que el punto de
equilibrio x̃ = 0 es asintóticamente estable, lo cual implica

que el esquema de observación converge a los estados
reales, se debe satisfacer que la parte simétrica de la
matriz

R+ L

[
G0 +

m∑
i=1

Giui

]
(17)

sea postiva definida. Con la selección correcta del término
L es posible garantizar que se cumple esta condición.

3.3 Control basado en Observador

En esta sección se muestra la última parte del diseño al
considerar un esquema de control basado en observador y
establecer las condiciones que se deban satisfacer para que
en conjunto, tanto e como x̃, tiendan a cero. Para esto,
se parte de la hipótesis que los dos esquemas mostrados
anteriormente se pueden interconectar de tal manera que
se logre el objetivo de control planteado.

Considerando la dinámica del error de control (5) con ũ
diseñada como se muestra en 3.1, para realizar el control
basado en observador se realiza un cambio de variable en
el esquema de control presentado de la forma

ê= x̂− x⋆

ê= e− x̃ (18)

Al realizar la manipulación algebraica se obtiene

û=−kB⊤(x⋆)Qê

=−kB⊤(x⋆)Pe+ kB⊤(x⋆)Px̃ (19)

Al sustituir (19) en (5) se tiene que

ė = [J(u)− (R+B(x⋆)kB
⊤(x⋆)]Pe+B(x⋆)kB

⊤(x⋆)Px̃
(20)

con J(u) = J0 +
∑m

i=1 Jiui⋆

A partir de (20) se realiza el análisis de convergencia del
esquema propuesto. Para ello se define al estado extendido
z = [e x̃]⊤ obteniendose el sistema

ż =

([
J(u) 0
0 J(u)

]
−
[
R+B(x⋆)kB

⊤(x⋆) −B(x⋆)kB
⊤(x⋆)

0 R− LG⊤

])[
Q 0
0 Q

]
z

(21)

con G = [G0 +
∑m

i=1 Giui].

Una vez definido el sistema correspondiente al estado
extendido, se determinan las condiciones que garanticen
que z = 0 es asintóticamente estable. Para esto, es
conveniente re-escribir el sistema (21) como

ė= [J(u)− (R+B(x⋆)kB
⊤(x⋆))]Pe+

+B(x⋆)kB
⊤(x⋆)Px̃ (22)

˙̃x= [J(u)− (R+ LG⊤)]Px̃ (23)

Bajo estas condiciones, se sabe que si el sistema (22),
con x̃ como entrada, es entrada a estados estable y el
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origen del sistema (23) es globalmente y uniformemente
asintóticamente estable, entonces el origen del sistema
interconectado (22)-(23) es globalmente y uniformemente
asintóticamente estable (Khalil, 2002).

Para verificar que la situación descrita en el párrafo an-
terior se cumple, considere primero la función candidata
de Lyapunov dada por

V (e) =
1

2
e⊤Pe (24)

Obteniendo su derivada a lo largo de las trayectorias de
(22), se tiene

V̇ (e) = e⊤P ė (25)

=−e⊤PR0Pe+ e⊤PB(x⋆)kB
⊤(x⋆)Px̃ (26)

con R0 = R+B(x⋆)kB
⊤(x⋆).

Acotando esta derivada, se obtiene

V̇ (e)≤−∥P∥2∥R0∥∥e∥2 + k∥P∥2∥B(x⋆)∥2∥x̃∥

≤−(1− θ)∥P∥2∥R0∥∥e∥2, ∀∥e∥ ≥ k∥B(x⋆)∥2∥x̃∥
θ∥R0∥

con 0 < θ < 1, lo cual muestra que si x⋆ es acotado,
entonces el sistema (22) es entrada a estados estable.
Lo cual implica que si los estados observados x̃ están
acotadas, el error de control e también estará acotado.

Por otro lado, considere para el sistema (23) la función
candidata de Lyapunov

V (x̃) =
1

2
x̃⊤Px̃ (27)

Obteniendo su derivada a lo largo de las trayectorias de
(23), se tiene

V̇ (x̃) = x̃TP ˙̃x (28)

≤−x̃⊤P (R+ LG⊤)Px̃ (29)

donde, por diseño, el término L garantiza que el punto
de equilibrio x̃ = 0 es globalmente y uniformemente
asintóticamente estable. aśı, al realizar el diseño como se
plantea e interconectar al controlador con el observador,
es posible garantizar que el esquema propuesto cumple
con el objetivo de control.

4. EVALUACIÓN NUMÉRICA

Para realizar la evaluación numérica se considera el mod-
elo PCH del convertidor Boost dado por[

ϕ̇
q̇

]
=

([
0 −u
u 0

]
−

[
Rl 0

0
1

Rc

])
∇H(x) +

[
1
0

]
Vin (30)

donde ϕ = Li ∈ R es el flujo magnético en el inductor,
q = Cv ∈ R es la carga en el capacitor, mientras
J(u) = −J(u)⊤ ∈ R2×2 y R = R⊤ ≥ 0 ∈ R2×2. Además

Vin ∈ R es el voltaje de entrada al circuito y u ∈ R es el
ciclo de trabajo de la señal de encendido y apagado de los
interruptores.

Bajo las condiciones descritas, el Hamiltoniano asociado
a (30) es

H(x) =
1

2
x⊤Qx2Lx

con x1 = ϕ, x2 = q y

Q =

 1

L
0

0
1

C

 ; x =

[
x1

x2

]
donde L es la inductancia y C la capacitancia. Adicional-
mente, note que en este caso se tiene que

G =

[
1
0

]
Los valores deseados denotados como x⋆ se obtiene al
resolver el sistema de ecuaciones dado por la dinámica
admisible

ẋ⋆ = [J(u⋆)−R]Px⋆ +GVin (31)

obteniendo x⋆ = {x1⋆, x2⋆}

4.1 Diseño del Control basado en observador

Para el diseño del controlador, se establece una diferencia
entre los estados del sistema y los estados deseados, es
decir, un error e = x− x⋆.

Obteniendo la dinámica del error ė = ẋ− ẋ⋆ y al realizar
las manipulaciones algebraicas pertinentes se tiene

ė = [J(u)−R]Pe+B(x⋆)ũ (32)

donde

B(x⋆) =

−x2⋆

Cx1⋆

L


Para verificar la estabilidad del punto de equilibrio de la
dinámica del error se propone la función candidata de
Lyapunov

V (e) =
1

2
e⊤Pe (33)

Al obtener la derivada a lo largo de las trayectorias del
sistema se tiene

V̇ (e) = −e⊤PRPe+ e⊤PB(x⋆)ũ (34)

Ahora se propone ũ como

ũ = −kB⊤(x⋆)Pe (35)

Entonces, la derivada de la función candidata de Lya-
punov toma la forma
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V̇ (e) = −e⊤P (R+B(x⋆)kB
⊤(x⋆))Pe (36)

Para determinar la convergencia del error de control se
necesita garantizar que la parte simétrica de la matriz
R + B(x⋆)kB

⊤(x⋆) sea positiva definida, donde en este
caso se tiene

R+B(x⋆)kB
⊤(x⋆) =

Rl +
kx2

2⋆

C2
−kx1⋆x2⋆

LC

−kx1⋆x2⋆

LC

1

Rc
+

kx2
1⋆

L2

 (37)

Aśı, se debe satisfacer las siguientes condiciones

Rl +
kx2

2⋆

C2
> 0 (38)

Rl

Rc
+

kRlx
2
1⋆

L2
+

kx2
2⋆

RcC2
> 0 (39)

Dado que aparecen términos cuadráticos y todos los
parámetros del sistema son positivos, una condición sufi-
ciente para garantizar convergencia del esquema de con-
trol es necesario que se satisfaga k > 0

Para complementar el diseño del esquema de control,
se considera el diseño de un esquema de observación a
partir de las mediciones disponibles en el sistema para
eventualmente realizar control basado en observador.

El esquema propuesto es el siguiente

˙̂x= [J(u)−R]Px̂+ gVin + L(y − ŷ) (40)

ŷ = g⊤Px̂ (41)

Se propone al error de observación como x̃ = x − x̂,
entonces la dinámica del error se expresa como

˙̃x = [J(u)− (R+ Lg⊤)]Px̃ (42)

Para garantizar convergencia del esquema de observación
se analiza la estabilidad del punto de equilibrio de la
dinámica del error. Se propone

V (x̃) = x̃⊤Px̃ (43)

Al obtener la derivada a lo largo de las trayectorias del
sistema, se tiene

V̇ (x̃) = −x̃⊤P (R+ Lg⊤)Px̃ (44)

de donde se obtiene que la parte simétrica de R+ LC es

(R+ Lg⊤)sym =

Rl + L1
1

2
L2

1

2
L2

1

Rc


por lo que, para que esta matriz sea definida positiva, se
deben cumplir las siguientes condiciones

Rl + L1 > 0 (45)

Rl

Rc
− L2

2

4
+

L1

Rc
> 0 (46)

Para la evaluación numérica se definieron los valores
mostrados en la Tabla 1, mientras que los valores deseados
considerados fueron

{i∗, v∗, u∗} = {2, 50, 0.5}

Parámetro Valor

Voltaje de entrada Vin 25[v]

Voltaje de salida vout 50[v]

Inductancia l 312.5[µH]

Resistencia de carga Rc 50[Ω]

Capacitancia 200[µF ]

Ganancia K 0.001

Ganancia L1 80

Ganancia L2 −2

Table 1. Parámetros para la evaluación

En las gráficas de la Figura 1 se muestran las respuestas
del controlador, como evoluciona la corriente, el voltaje y
el ciclo de trabajo para el convertidor Boost.
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Fig. 1. Respuesta convertidor Boost

En las Figuras 2 y 3, se muestra la comparación de los
estados reales del sistema y los estados observados dada
una condición inicial. Se muestran la corriente y voltaje,
respectivamente.
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Fig. 2. Corriente en el inductor
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Fig. 3. Voltaje de salida

5. CONCLUSIONES

En este art́ıculo, se considera un modelo generalizado
de convertidores CD-CD, el cual exhibe una estructura
de sistemas PCH. Se propone una metodoloǵıa clara
y detallada del diseño de un controlador basado en
observador, mostrando cada elemento que lo componen
aśı como las condiciones que deben cumplirse en la
selección de ganancias para cumplir los objetivos de
control planteados. La ventaja de trabajar con esquemas
que preservan la estructura es que se pueden buscar
interconexión adecuadas para facilitar el análisis aśı como
una implementación. Además, con el fin de validar los
resultados teóricos, se realizó una evaluación numérica en
donde se presentaron los comportamiento dinámicos del
controlador y del observador.
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