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Resumen. This article presents the design of a robust control strategy applied to a Unicycle Mobile
Robot (UMR), which is subject to disturbances caused by wheel slippage, to provide trajectory
tracking. By implementing a saturated super-twisting control, the velocity signals of the UMR are
guaranteed to remain continuous and within specified maximum bounds. Stability analysis is based on
Lyapunov functions and invariant sets, demonstrating that the sliding variables converge to the origin
in finite time. The specific design of the sliding variables ensures that the tracking errors asymptotically
converge to zero. Consequently, the UMR successfully follows the desired trajectory while satisfying
the velocity constraints and dealing with the disturbances.

Keywords: Autonomous Vehicles, Sliding Mode control, Mobile Robots, Trajectory Tracking,
Saturated Control.

1. INTRODUCCION

La tarea de seguimiento robusto de trayectorias en presencia
de perturbaciones externas, como el patinado de las ruedas,
sigue siendo un desafı́o fundamental en el control de un
Robot Móvil Uniciclo (RMU). El problema de seguimiento de
trayectoria en robots móviles no holónomos, como los RMUs,
representa un desafı́o en el diseño de controladores robustos y
prácticos, debido a su naturaleza subactuada, la presencia de
restricciones no integrables en su cinemática y la inevitable
existencia de perturbaciones e incertidumbres estructurales.

Diversos trabajos han abordado este problema utilizando técni-
cas de control no lineal clásicas. Por ejemplo, Li (2022) pro-
pone un controlador adaptable para robots móviles con satura-
ción en la entrada con estimadores de perturbaciones con base
radial. Aunque se respeta la saturación como restricción, no se
incorpora en el diseño del controlador, limitando la interven-
ción del usuario sobre los lı́mites de actuación. Por otro lado,
Chen (2017) introduce un esquema de control robusto apoyado
en un observador de perturbaciones, logrando estabilidad me-
diante funciones de rendimiento prescrito. Sin embargo, este
trabajo tampoco contempla la saturación directamente en el
control. Asif et al. (2016) exploran un esquema de control
por retroalimentación de salida aplicando controladores adap-
tables tipo PID regularizados. Aunque logran resultados en
presencia de perturbaciones, su aproximación carece de una
formulación formal robusta ante saturación de los actuadores.
El problema de seguimiento de RMU con Control por Mo-
dos Deslizantes (SMC) convencionales es abordado por varios
autores, como Mera et al. (2020), logrando la convergencia
a conjuntos cercanos a cero bajo ciertas condiciones. Rochel
⋆ Este trabajo recibió apoyo de la SIP-IPN número 20253697, y del Consejo
Nacional de Ciencia y Tecnologı́a (CONACyT) con el CVU 1034576.

et al. (2022) usan técnicas de control por SMC de segundo
orden, como el algoritmo Super-Twisting (STA), conocido por
su robustez y capacidad de garantizar convergencia en tiempo
finito sin requerir derivadas de orden superior. No obstante,
estos enfoques suponen restricciones fuertes en los errores de
estado y no consideran saturación explı́cita en el diseño.

Para resolver las limitaciones anteriores, se han propuesto va-
riantes del STA para entornos con control saturado. Castillo
et al. (2016) introduce una formulación basada en Lyapunov
que garantiza estabilidad en tiempo finito mediante un término
correctivo adaptado a la saturación. Por su parte, Golkani et al.
(2018) incorporan funciones de saturación suaves en el STA,
permitiendo conservar la continuidad del control y atenuar el
chattering. Seeber and Reichhartinger (2020) usan una versión
condicionada del STA que ajusta dinámicamente su ganancia
conforme el sistema se aproxima a los lı́mites de saturación,
alternando entre modos según la magnitud del error. Una con-
tribución clave se presenta por Seeber and Horn (2019), quie-
nes proponen un Algoritmo Super-Twisting Saturado (SSTA)
que no solo respeta explı́citamente los lı́mites de control im-
puestos por saturación, sino que también garantiza continuidad
de la señal de control y rechazo efectivo de perturbaciones
acotadas. Esta propiedad es crucial en sistemas fı́sicos reales,
como RMUs, donde discontinuidades en la señal pueden re-
sultar perjudiciales. Su diseño simple, basado en estabilidad
por Lyapunov y sin requerir ganancias altamente moduladas ni
restricciones estructurales complejas como LMIs, lo convierte
en una base ideal para implementaciones prácticas. El uso del
SSTA ha sido explorado en sistemas fı́sicos complejos como
vehı́culos submarinos y barcazas por Cao et al. (2022), Gue-
rrero et al. (2024) y Lv et al. (2023) que emplean observadores
de velocidad, y con velocidades no medidas por Tijjani et al.
(2023) y Gao et al. (2024) que integran observadores robus-
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tos, ası́ como en misiles, Gong et al. (2022) implementa una
saturación continua tipo tangente hiperbólica que preserva la
continuidad del control.

El presente trabajo propone un controlador SSTA aplicado
especı́ficamente al seguimiento de trayectoria de un RMU,
como una aportación que combina:

Robustez frente a perturbaciones acotadas, sin necesidad
de estimadores.
Señales de control continuas y acotadas por diseño, aptas
para implementación real.
Estructura basada en teorı́a de estabilidad de Lyapunov,
sin depender de LMIs ni observadores de perturbaciones.

Este trabajo muestra que el control, trabajando de manera
saturada, permite el seguimiento bajo ciertas condiciones. Fi-
nalmente, el diseño propuesto se valida mediante simulacion
numérica, en un escenario con saturación y perturbaciones.

2. DESCRIPCION DEL SISTEMA Y PLANTEAMIENTO
DEL PROBLEMA

Considere un sistema de seguimiento compuesto por un RMU
con la configuración:

ẋ = (1−d1)ν cos(θ),
ẏ = (1−d1)ν sin(θ),
θ̇ = (1−d2)ω,

(1)

donde x,y ∈ R son la posición en x e y del robot en el marco
de referencia inercial, θ ∈ R es la orientación en el marco
de referencia inercial. ν ∈ R y ω ∈ R son las velocidades
lineal y angular, respectivamente. d1,d2 ∈ R son perturbacio-
nes causadas por el patinado y deslizamiento de las ruedas,
respectivamente.

La trayectoria deseada está dada por la siguiente dinámica:
ẋd = νd cos(θd),

ẏd = νd sin(θd),

θ̇d = ωd .

(2)

Suposición 1. La velocidad y aceleración, lineal y angular, de
la trayectoria deseada se asumen acotadas:

0 < νdmı́n ≤ νd ≤ νdmáx , |ν̇d | ≤ ν̄dmáx ,

|ωd | ≤ ωdmáx , |ω̇d | ≤ ω̄dmáx ,

donde νdmı́n , νdmáx , ωdmáx , ν̄dmáx y ω̄dmáx son constantes escala-
res positivas.
Suposición 2. Las perturbaciones y sus derivadas son no me-
dibles pero están acotadas y sus cotas son conocidas, para
i = 1,2, como |di| ≤ dmáx < 1 y |ḋi| ≤ d̄máx.

Esta suposición es realista, ya que las perturbaciones que afec-
tan a la dinámica están naturalmente limitadas por las restric-
ciones fı́sicas del sistema. Además, dichas perturbaciones no
varı́an de manera arbitrariamente rápida, lo cual se traduce en
que su derivada permanece acotada.

El objetivo de control es representado en términos del error de
seguimiento e ∈ R3, el cual se describe como:

e = [e1 e2 e3]
T
= A(θ)(Pd −P) (3)

donde:

A(θ) =

[ cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

]
, P =

[x
y
θ

]
, Pd =

[xd
yd
θd

]

donde P,Pd ∈ R3 son el vector de postura del robot y el vector
de postura de la trayectoria deseada.

La tarea de control es llevar el error de seguimiento e a cero, a
pesar de la presencia de las perturbaciones d1 y d2, utilizando
entradas de control ν y ω , las cuales están acotadas como:

|ν | ≤ νmáx, |ν̇ | ≤ ν̄máx

|ω| ≤ ωmáx, |ω̇| ≤ ω̄máx
(4)

donde νmáx, ωmáx, ν̄máx y ω̄máx son constantes escalares posi-
tivas que representan sus valores máximos.

Obtención de la dinámica de los errores de seguimiento.

La dinámica de los errores de seguimiento se obtiene derivan-
do los errores en (3) como:

ė1 = (1−d2)ωe2 +d1ν +νd cos(e3)−ν ,

ė2 =−(1−d2)ωe1 +νd sin(e3),

ė3 = ωd − (1−d2)ω.

3. DISEÑO DE CONTROL

Se propone el diseño de dos variables deslizantes, de tal forma
que cuando el sistema entre en el modo deslizante, los errores
de seguiminto converjan a cero:

σ1(e, t) =e1(t),
σ2(e, t) =e3(t)+ arctan(ρe2(t)),

(5)

donde ρ > 0 es una constante escalar.

La elección de la función arctan(ρe2) en la definición de la
superficie deslizante tiene como propósito mantener acotada la
contribución del error e2. A diferencia de un término lineal, la
función arcotangente presenta un rango limitado (−π/2,π/2),
lo cual actúa como una saturación natural que evita que valores
grandes de e2 generen señales de control excesivas.

Entonces, las señales de control ν(e, t) y ω(e, t) se proponen
como señales continuas utilizando la siguiente estructura:

ν(e, t) =
{

νd cos(e3)+U1⌊σ1(e, t)⌉0 : t < T1;
νd cos(e3)+ k1a⌊σ1(e, t)⌉1/2 − v1(e, t) : t ≥ T1;

v̇1(e, t) =
{

0 : t < T1;
−k1bsign(σ1(e, t)) : t ≥ T1.

ω(e, t) =
{

ωd +U2sign(σ2(e, t)) : t < T2;
ωd + k2a⌊σ2(e, t)⌉1/2 − v2(e, t) : t ≥ T2;

v̇2(e, t) =
{

0 : t < T2;
−k2bsign(σ2(e, t)) : t ≥ T2.

T1 = inf{t : |σ1(e, t)| ≤ ξ
2
1 };

T2 = inf{t : |σ2(e, t)| ≤ ξ
2
2 };

(6)
donde ⌊·⌉q = | · |qsign(·) para q ∈R≥0, U1 := νmáx −νdmáx > 0
y U2 := ωmáx − ωdmáx > 0. Los valores iniciales de v1 y v2
se proponen como v1(0) = v2(0) = 0 y en el instante de
conmutación como v1(T1) = v2(T2) = 0, por lo que para ese
instante las señales de control son:

ν(T1) = νd cos(e3)+ k1a⌊σ1(T1)⌉1/2 − v1(T1)

= νd cos(e3)+ k1aξ1sign(σ1(T1)),

ω(T2) = ωd cos(e3)+ k2a⌊σ2(T2)⌉1/2 − v2(T2)

= ωd cos(e3)+ k2aξ2sign(σ2(T2)).

Observe que las saturaciones |ν |< νdmáx +U1 y |ω|< ωdmáx +
U2 se sostienen para todo t ≥ T1 y t ≥ T2, por lo que podrı́an
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remplazarse las condiciones t ≥ T1 y t ≥ T2 por |ν | < νdmáx +
U1 y |ω|< ωdmáx +U2, respectivamente. Además es necesario
que k1aξ1 y k2aξ2 no excedan U1 y U2 para que las señales
de control ν(T1) y ω(T2) respeten los lı́mites establecidos
νmáx = νdmáx +U1 y ωmáx = ωdmáx +U2, respectivamente. Por
lo tanto, la continuidad de la señal de control en el instante de
conmutación solo se garantiza bajo las condiciones ξ1 = k−1

1a
U1

y ξ2 = k−1
2a

U2.
Teorema 1. Sea un RMU, con el modelo cinemático mostrado
en (1), y sea una trayectoria deseada dada en términos de la
solución del modelo (2), satisfaciendo las Suposiciones 1 y 2.
Sean las variables deslizantes σ1 y σ2 dadas en (5). Entonces,
las leyes de control con saturación ν(e, t) y ω(e, t) en (6) con
las ganancias de control ρ > 0, k1a ≥

√
2(k1b +∆1), k1b > ∆1,

k2a ≥
√

2(k2b +∆2), k2b > ∆2, νmáx y ωmáx, garantizan la
convergencia de las variables deslizantes a cero en tiempo
finito. Lo que a su vez asegura la convergencia asintótica del
error de seguimiento e, en (3), a cero.

Prueba: El análisis de estabilidad se desarrolla usando teorı́a
de estabilidad de Lyapunov. Se siguen los mismos pasos de
la prueba del SST de Seeber and Horn (2019) adaptados
al modelo del RMU y para el par de variables deslizantes
propuestas en este trabajo.

Análisis de estabilidad de σ1(e, t):

Es necesario encontrar la región de σ1 para la cual existe un
control ν que satisface (4) garantizando su convergencia a
cero.

En el caso del control (6) se puede observar que justo en el
instante de conmutación:

|ν | ≤ |νd cos(e3)|+ |U1⌊σ1(e, t)⌉0|
≤ νdmáx +νmáx −νdmáx = νmáx.

Por lo tanto |ν | ≤ νmáx, por lo que la prueba de cada variable
deslizante se divide en dos partes, cuando |ν |= νmáx y cuando
|ν |< νmáx, presentadas a continuación.

- Cuando |ν(e, t)|= νmáx: En este caso es necesario identi-
ficar el comportamiento cuando |ν(e, t)|= νdmáx +U1 = νmáx.
Entonces, analizando el control y encontrando el conjunto
atractivo de σ1(e, t) para el cual el control ν(e, t) no puede
sobrepasar ni deslizarse a lo largo del lı́mite de saturación:

d|ν(e, t)|
dt

= sign(ν(e, t))ν̇(e, t)

=

(
ν̇d cos(e3)−νd sin(e3)ė3 +

1
2

k1a |σ1(e, t)|−1/2
σ̇1(e, t)

−v̇1(e, t))sign(ν(e, t)).

Sustituyendo ė3, σ̇1(e, t) y v̇1(e, t) y aplicando desigualdades
para todos los elementos que tienen cota:
d|ν(e, t)|

dt
≤ ν̄dmáx +νdmáx ωdmáx + γνdmáx +

1
2

k1a |σ1(e, t)|−1/2 (
γ|e2|+νdmáx

+(dmáx −1)(νdmáx +U1)
)
+ k1b .

donde γ := (1+dmáx)ωmáx.

Puede observarse que para garantizar que la derivada de la
señal |ν(e, t)| sea definida negativa, d|ν(e,t)|

dt < 0, de la expre-
sión anterior se tiene que satisfacer, tanto que:

|e2|<
U1(1−dmáx)−dmáxνdmáx

γ
.

como que:
1
2

k1a |σ1(e, t)|−1/2(γ|e2|+dmáxνdmáx +U1(dmáx −1))

> k1b + ν̄dmáx +νdmáxωdmáx + γνdmáx .
(7)

Despejando la variable σ1(e, t) de (7), se obtiene el conjunto
atractivo de σ1(e, t) dado como:

|σ1(e, t)|1/2 <
k1a(γ|e2|+dmáxνdmáx +U1(dmáx −1))
2(k1b + ν̄dmáx +νdmáxωdmáx + γνdmáx)

. (8)

Si σ1(e, t) satisface esta cota entonces el control ν(e, t) no
sobrepasará ni permanecerá en el lı́mite de saturación, por lo
que esta expresión se utilizará más adelante.

- Cuando |ν(e, t)| < νmáx: En esta parte de la prueba, se
utiliza la derivada de la primera variable deslizante mostrada
en (5), sustituyendo las señales de control (6):

σ̇1(e, t) = (1−d2)ωe2 +d1ν − k1a⌊σ1(e, t)⌉1/2 + v1(e, t),
v̇1(e, t) =−k1bsign(σ1(e, t)).

Se introducen los cambios de variable σa := σ1(e, t) y σb :=
d1ν + v1(e, t), y la perturbación se define como δ1(e, t) :=
ḋ1ν +d1ν̇ , entonces se obtiene la siguiente expresión:

σ̇a = (1−d2)ωe2 − k1a⌊σa⌉1/2 +σb,

σ̇b =−k1bsign(σa)+δ1(e, t),

donde ∆1 := d̄máxνmáx +dmáxν̄máx y el término |δ1(e, t)| ≤ ∆1
está acotado.

Se propone el conjunto de curvas de nivel de Lyapunov:

Vν(σa,σb) =


Vν1(σa) i f (σa,σb) ∈ M1;

Vν2(σb) i f (σa,σb) ∈ M2;

Vν3(σa,σb) i f (σa,σb) ∈ M3;

donde Vν1(σa) := k2
1a
|σa|, Vν2(σb) := σ2

b and Vν3(σa,σb) :=
Vν1(σa)+Vν2(σb), además:

M1 := {(σa,σb) : 0 ≤ σbsign(σa)< k1a |σa|1/2 − γ|e2|},
M2 := {(σa,σb) : k1a |σa|1/2 − γ|e2| ≤ σbsign(σa)},
M3 := {(σa,σb) : σbsign(σa)< 0}.

Note que del conjunto M1 se obtiene que k1a |σa|1/2 > γ|e2|.

Análisis con Vν1(σa): La función de Lyapunov se escoge
como Vν1(σa) := k2

1a
|σa| y su derivada se calcula como:

V̇ν1(σa) = k2
1a σ̇asign(σa)

= k2
1a((1−d2)ωe2 − k1a |σa|1/2sign(σa)+σb)sign(σa)

≤ k2
1a(γ|e2|− k1a |σa|1/2 +σbsign(σa)).

Nótese que en el conjunto M1 las siguientes desigualdades
son satisfechas 0≤σbsign(σa)< k1a |σa|1/2−γ|e2|. Aplicando
estas, la derivada de la función de Lyapunov es definida
negativa, V̇ν1(σa)< 0.

Análisis con Vν2(σb): La función de Lyapunov se escoge
como Vν2(σb) := σ2

b y su derivada se calcula como:

V̇ν2(σb) = 2σ̇bσb = 2(−k1bsign(σa)+δ1(e, t))σb. (9)

Note que en el conjunto M2 la desigualdad 0 < σbsign(σa) se
satisface, aplicando esto, la expresión (9) está dada como:
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V̇ν2(σb) =−2(k1bσbsign(σa)−δ1(e, t)σb)

=−2σbsign(σa)(k1b −δ1(e, t)sign(σa))

≤−2σbsign(σa)(k1b −|δ1(e, t)|).

Por lo tanto, la derivada de la función de Lyapunov es definida
negativa, V̇ν2(σb)< 0, cuando |δ1(e, t)| ≤ ∆1 < k1b .

Análisis con Vν3(σa,σb): La función de Lyapunov se escoge
como Vν3(σa,σb) :=Vν1(σa)+Vν2(σb) y su derivada está dada
por:

V̇ν3(σa,σb) = V̇ν1(σa)+V̇ν2(σb)

=−k3
1a
|σa|1/2 +σbsign(σa)(k2

1a −2k1b +2δ1(e, t)sign(σa))

+ k2
1a(1−d2)ωe2sign(σa).

Para este conjunto M3, la desigualdad σbsign(σa) < 0 se
satisface, por lo que la expresión anterior está dada como:

V̇ν3(σa,σb)≤−k3
1a
|σa|1/2 +σbsign(σa)

(
k2

1a −2k1b

+2δ1(e, t)sign(σa))+ k2
1aγ|e2|

< σbsign(σa)(k2
1a −2(k1b +∆1)).

Si el parámetro k1 se selecciona como k1a ≥
√

2(k1b +∆1),
entonces la derivada de la función de Lyapunov es definida
negativa, V̇ν3(σa,σb) < 0. Lo cual implica la convergencia
asintótica al origen de las variables (σa,σb). Por lo tanto, σ1
converge globalmente asintóticamente a cero o de acuerdo a
Seeber and Horn (2017) converge en tiempo finito, siempre y
cuando (8) se satisfaga.

Análisis de estabilidad de σ2(e, t):

En esta parte se aplica el mismo procedimiento que en el
análisis de estabilidad de la primera variables deslizante.

- Cuando |ω(e, t)|= ωmáx: En este caso es necesario identi-
ficar el comportamiento cuando |ω(e, t)|=ωdmáx +U2 =ωmáx.

Sustituyendo σ̇2(e, t) y v̇2(e, t) y aplicando desigualdades para
todos los elementos que tienen cota:

d|ω(e, t)|
dt

≤ ω̄dmáx +
1
2

k2a |σ2(e, t)|−1/2 (
ρ(γ|e1|+νdmáx)

+U2(dmáx −1)+dmáxωdmáx

)
+ k2b .

Para garantizar que la derivada de la señal |ω(e, t)| sea definida
negativa, d|ω(e,t)|

dt < 0, se tiene que satisfacer tanto que:

|e1|<
U2(1−dmáx)−dmáxωdmáx −ρνdmáx

ργ
.

como que:
1
2

k2a |σ2(e, t)|−1/2 (
ρ(γ|e1|+νdmáx )+U2(dmáx −1)+dmáxωdmáx

)
> k2b + ω̄dmáx .

(10)

Despejando la variable σ2(e, t) de (10), se obtiene el conjunto
atractivo de σ2(e, t) dado por:

|σ2(e, t)|1/2 <
k2a (ρ(γ|e1|+νdmáx )+U2(dmáx −1)+dmáxωdmáx )

2(k2b + ω̄dmáx)
. (11)

Si σ2(e, t) satisface esta cota entonces el control ω(e, t) no
sobrepasará ni permanecerá en el lı́mite de saturación, por lo
que esta expresión se utilizará más adelante.

- Cuando |ω(e, t)| < ωmáx: En esta parte de la prueba, se
utiliza la derivada de la segunda variable deslizante mostrada
en (5), sustituyendo las señales de control (6):

σ̇2(e, t) =
ρ

ρ2e2
2 +1

(−(1−d2)ωe1 +νd sin(e3))+d2ω

− k2a⌊σ2(e, t)⌉1/2 + v2(e, t),
v̇2(e, t) =−k2bsign(σ2(e, t)).

Se introducen los cambios de variable σc := σ2(e, t) y σd :=
d2ω + v2(e, t), y la perturbación se define como δ2(e, t) :=
ḋ2ω +d2ω̇ , entonces se obtiene la siguiente expresón:

σ̇c =
ρ

ρ2e2
2 +1

(−(1−d2)ωe1 +νd sin(e3))− k2a⌊σc⌉1/2 +σd ,

σ̇d =−k2bsign(σc)+δ2(e, t),

donde ∆2 := d̄máxωmáx +dmáxω̄máx y el término |δ2(e, t)| ≤ ∆2
está acotado.

El factor ρ

(ρe2)2+1 atenúa la influencia de ė2 a medida que
|e2| aumenta. Para valores grandes de e2, la dinámica de
σ2 es menos sensible a cambios en e2, esto no compromete
la estabilidad del sistema, ya que el diseño del controlador
garantiza que e2 permanezca acotado y converja a cero.

Se propone el conjunto de curvas de nivel de Lyapunov:

Vω(σc,σd) =


Vω1(σc) si (σc,σd) ∈ M4;

Vω2(σd) si (σc,σd) ∈ M5;

Vω3(σc,σd) si (σc,σd) ∈ M6;

donde Vω1(σc) := k2
2a
|σc|, Vω2(σd) := σ2

d and Vω3(σc,σd) :=
Vω1(σc)+Vω2(σd), además:

M4 := {(σc,σd) : 0 ≤ σdsign(σc)< k2a |σc|1/2 −ρ(γ|e1|+νdmáx )},

M5 := {(σc,σd) : k2a |σc|1/2 −ρ(γ|e1|+νdmáx )≤ σdsign(σc)},
M6 := {(σc,σd) : σdsign(σc)< 0}.

Note que del conjunto M4, se obtiene que k2a |σc|1/2 >
ρ(γ|e1|+νdmáx).

Análisis con Vω1(σc): La función de Lyapunov se escoge
como Vω1(σc) := k2

2a
|σc| y su derivada se calcula como:

V̇ω1(σc)≤ k2
2a

(
ργ|e1|+ρνdmáx − k2a |σc|1/2 +σdsign(σc)

)
.

Note que en el conjunto M4, las desigualdades 0≤σdsign(σc)<

k2a |σc|1/2 −ρ(γ|e1|+νdmáx) se cumplen, entonces, V̇ω1(σc)<
0.

Análisis con Vω2(σd): Se escoge la función de Lyapunov
Vω2(σd) := σ2

d y su derivada se calcula como:

V̇ω2(σd) = 2σ̇dσd = 2(−k2bsign(σc)+δ2(e, t))σd . (12)

Note que en el conjunto M5, la desigualdad 0 < σdsign(σc) se
satisface, aplicando esto, la expresión (12) está dada como:

V̇ω2(σd)≤−2σdsign(σc)(k2b −|δ2(e, t)|).

Por lo tanto, la derivada de la función de Lyapunov es definida
negativa, V̇ω2(σd)< 0, cuando |δ2(x, t)| ≤ ∆2 < k2b .

Análisis con Vω3(σc,σd): Se escoge la función de Lyapunov
Vω3(σc,σd) := Vω1(σc)+Vω2(σd) y dado que en el conjunto
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M6 la desigualdad σdsign(σc)< 0 se satisface, la derivada está
dada como :

V̇ω3(σc,σd)≤−k3
2a
|σc|1/2 +σdsign(σc)

(
k2

2a −2k2b

+2δ2(e, t)sign(σc))+ρk2
2a

(
γ|e1|+νdmáx

)
< σdsign(σc)(k2

2a −2k2b −2∆2)).

Seleccionando k2a ≥
√

2(k2b +∆2), entonces la derivada de
la función de Lyapunov es definida negativa, V̇ω3(σc,σd) <
0. Lo cual implica la convergencia asintótica al origen de
las variables (σc,σd). Por lo tanto, σ2 converge globalmente
asintóticamente a cero. De acuerdo a Seeber and Horn (2017)
converge en tiempo finito, siempre y cuando (11) se satisfaga.

Análisis de estabilidad de e2(e, t): Para este momento de la
prueba se tiene que σ1 = e1 → 0 y σ2 → 0, entonces e3 =
−arctan(ρe2(t)), por lo que ė2(e, t)=−νd sin(arctan(ρe2(t))).

Una vez que se alcanzan las superficies deslizantes la dinámica
del segundo error de seguimiento es autónoma, por lo que,
dada su dinámica estable, convergerá a cero. Aplicando la

identidad trignométrica sin(arctan(x)) = x
√

1+x2

1+x2 se obtiene

que ė2(e, t) =−νd
ρe2

√
1+ρ2e2

2
1+ρ2e2

2
.

Utilizando la función candidata de Lyapunov Ve2 = 1
2 e2, se

obtiene que la derivada está dada como:

V̇e2 =−νd

ρe2
2

√
1+ρ2e2

2

1+ρ2e2
2

≤−νdmı́n

ρe2
2

√
1+ρ2e2

2

1+ρ2e2
2

.

Por lo tanto, como V̇e2 < 0 para e2 ̸= 0, entonces el segundo
error de seguimiento e2 converge asintóticamente a cero.

Análisis de estabilidad de e3(e, t):

Como consecuencia de la convergencia de e2(t) a cero, enton-
ces |e3| ≤ −arctan(ρe2(t)). Se observa que si |e2| → 0, enton-
ces |e3| → 0, en otras palabras, el tercer error de seguimiento
converge asintóticamente a cero.

Análisis para garantizar que ν ≤ νmáx:
Considere el conjunto más grande de la función de Lyapunov
Vν(σa,σb), dentro del cual σa = σ1 está acotado como en (8).
Este está caracterizado por Vν(σa,σb)< c1 con:

c1 = mı́n

{
Vν (σa,σb) : |σa|=

k2
1a
(γ|e2|+dmáxνdmáx +U1(dmáx −1))2

4(k1b + ν̄dmáx +νdmáx ωdmáx + γνdmáx )
2

}

Con el valor de |σa| de la expresión anterior, el mı́nimo de
Vν(σa,σb) es alcanzado para M2 como:

c1 = inf
{

Vν2(σb) : |σb|> k1a |σa|1/2 − γ|e2|
}

=Vν1(σa) =
k4

1a
(γ|e2|+dmáxνdmáx +U1(dmáx −1))2

4(k1b + ν̄dmáx +νdmáxωdmáx + γνdmáx)
2

Esto prueba que Vν(σa,σb) está acotado por una cota suficien-
temente grande para el conjunto M2, por lo que M1 y M3
también estarán acotados, al ser conjuntos más chicos que M2.

El valor más grande de Vν(σa,σb) en el instante de conmuta-
ción T1, se determina a continuación. En este instante |σa|= ξ 2

1
y v1 = 0, por lo que σb = d1ν + v1(e, t) = d1ν .

Restringiendo consideraciones a valores positivos de σa debi-
do a la simetrı́a por el valor absoluto, se puede encontrar el

valor más grande de Vν(σa,σb):
c2 = máx

|d1|≤dmáx
máx

|ν |≤νdmáx
+U1

Vν

(
ξ

2
1 ,d1ν

)
.

Se puede observar que el máximo de la expresión anterior
se obtiene para M3 (que al contemplar valores positivos
de σa, entonces σb ≤ 0) ya que Vν(σa,σb) es más chica
que los otros dos casos. Entonces, sustituyendo la expre-
sión anterior en Vν3(σa,σb), se obtiene que c2 = Vν1

(
ξ 2

1
)
+

Vν2

(
dmáx(νdmáx +U1)

)
= k2

1a
ξ 2

1 +d2
máx

(
νdmáx +U1

)2.

Si c2 < c1, es decir:

k2
1a ξ

2
1 +d2

máx
(
νdmáx +U1

)2

<
k4

1a
(γ|e2|+dmáxνdmáx +U1(dmáx −1))2

4(k1b + ν̄dmáx +νdmáxωdmáx + γνdmáx)
2 ,

se cumple, entonces Vν(σa,σb) < c1 también se cumple en el
instante de conmutación t = T1.

Como se probó en la sección anteriores que Vν(σa,σb) es
no creciente a lo largo de las trayectorias σa y σb, ya que
se garantiza que las derivadas son semi-definidas negativas,
entonces Vν(σa,σb)< c1 se cumple también para todo t ≥ T1.

Como se cumple que |ν |= νdmáx + k1a ξ1 ≤ νmáx en el instante
de conmutación t = T1 y además se probó que d|ν |

dt < 0,
entonces la cota |ν | ≤ νmáx se cumple también para todo t ≥ T1
y no se produce deslizamiento a lo largo de |ν |= νmáx.

Análisis para garantizar que ω ≤ ωmáx:
Siguiendo el mismo procedimiento que en el anális de ν , se
obtiene que si c4 < c3 se cumple, es decir:

k2
2a ξ

2
2 +d2

máx
(
ωdmáx +U2

)2

<
k2

2a
(ρ(γ|e1|+νdmáx )+U2(dmáx −1)+dmáxωdmáx )

2

4(k2b + ω̄dmáx)
2

,

entonces Vω(σc,σd) < c3 se cumple en el instante de conmu-
tación t = T2.

Como se cumple que |ω|=ωdmáx +k2a ξ2 ≤ωmáx en el instante
de conmutación t = T2, y además se probó que d|ω|

dt < 0,
entonces la cota |ω| ≤ ωmáx se cumple también para todo
t ≥ T2 y no se produce deslizamiento a lo largo de |ω|= ωmáx.

4. RESULTADOS DE SIMULACIÓN

Se considera un RMU modelado por la cinemática (1).
La trayectoria deseada es una Rosa Polar, parametrizada
en el tiempo como xd(t) = 2a(cos(ω0t))2 sin(ω0t), yd(t) =

2a(sin(ω0t))2 cos(ω0t) y θd(t) = arctan
(

ẏd(t)
ẋd(t)

)
, con a = 3 [m]

y ω0 = 0.1 [rad/s].

Y las velocidades variantes en tiempo, dado que en las curvas
debe de ir más lento el RMU, están dadas por:

νd(t) =
√

ẋ2
d(t)+ ẏ2

d(t), ωd =
ẋd ÿd − ẏd ẍd

ẋ2
d(t)+ ẏ2

d(t)
.

El objetivo es que el agente siga la trayectoria deseada lidiando
con las perturbaciones causadas por el patinado de las ruedas
debido al terreno. Utilizando la notación de (3), la postura
inicial se configura como P = (−1,−1,−π/4).

Se considera que el agente seguidor se controla por la ley
dada en el Teorema 1. Para las Suposiciones 1-2 los valores
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se establecen como νdmáx = 0.6 [m/s], ωdmáx = 0.5 [rad/s],
ν̄dmáx = 0.06 [m2/s], ω̄dmáx = 0.09 [rad2/s], νmáx = 1.1 [m/s],
ωmáx = 1 [rad/s], ν̄máx = 0.15 [m2/s], ω̄máx = 0.25 [rad2/s],
U1 = 0.5 y U2 = 0.5. Para la Suposición 2 las expresiones de las
perturbaciones son d1 = 0.2cos(t)+ 0.2 y d2 = 0.1sin(2t)+
0.2 por lo que las cotas están dadas como dmáx = 0.4 y d̄máx =
0.4. Entonces ∆1 y ∆2 pueden calcularse con base en las cotas
de d1, d2, ν y ω como ∆1 = 0.5 y ∆2 = 0.5. Las ganancias de
control respetan las desigualdades presentes en el Teorema 1 y
están dadas por k1a = 2, k1b = 1, k2a = 2, k2b = 1 y ρ = 0.5.

La Figura 1 muestra el comportamiento de las variables desli-
zantes, las cuales convergen a cero en menos de 8s. También
se observan los errores de seguimiento, una vez que las va-
riables deslizantes convergen a cero, estos alcanzan un valor
despreciable después de 20s. Las señales proporcionadas por el
control SSTA son mostradas en la Figura 2, note la ausencia de
chattering en ellas y que no llegan a los valores máximos, νmáx
y ωmáx, respectivamente. Finalmente, en la Figura 3 se pre-
senta la trayectoria deseada y el seguimiento de esta por parte
del RMU. Una animación utilizando los datos de la simulación
numérica puede verse en https://youtu.be/torHn4pA4rU.
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Figura 1. Variables Deslizantes (σ1 y σ2) y Errores de Segui-
miento (e1, e2 y e3).
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Figura 2. Señales de control ν y ω .
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Figura 3. Seguimiento de Trayectoria.

5. CONCLUSIONES

En este artı́culo se utiliza un SSTA para solucionar el problema
de seguimiento de trayectoria de un RMU. La estrategia de

control garantiza la convergencia asintótica de los errores de
seguimiento mediante un diseño particular de las variables des-
lizantes. Los resultados de la simulación muestran la efectivi-
dad del control para seguir la trayectoria impuesta, y confirman
que los RMU alcanzan el objetivo de control en presencia de
perturbaciones con una señal de control continua y saturada.
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