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Resumen. This article presents the design of a robust control strategy applied to a Unicycle Mobile
Robot (UMR), which is subject to disturbances caused by wheel slippage, to provide trajectory
tracking. By implementing a saturated super-twisting control, the velocity signals of the UMR are
guaranteed to remain continuous and within specified maximum bounds. Stability analysis is based on
Lyapunov functions and invariant sets, demonstrating that the sliding variables converge to the origin
in finite time. The specific design of the sliding variables ensures that the tracking errors asymptotically
converge to zero. Consequently, the UMR successfully follows the desired trajectory while satisfying

the velocity constraints and dealing with the disturbances.

Keywords: Autonomous Vehicles, Sliding Mode control, Mobile Robots, Trajectory Tracking,
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1. INTRODUCCION

La tarea de seguimiento robusto de trayectorias en presencia
de perturbaciones externas, como el patinado de las ruedas,
sigue siendo un desafio fundamental en el control de un
Robot Mévil Uniciclo (RMU). El problema de seguimiento de
trayectoria en robots méviles no holénomos, como los RMUs,
representa un desafio en el disefio de controladores robustos y
préacticos, debido a su naturaleza subactuada, la presencia de
restricciones no integrables en su cinematica y la inevitable
existencia de perturbaciones e incertidumbres estructurales.

Diversos trabajos han abordado este problema utilizando técni-
cas de control no lineal clédsicas. Por ejemplo, Li (2022) pro-
pone un controlador adaptable para robots méviles con satura-
cién en la entrada con estimadores de perturbaciones con base
radial. Aunque se respeta la saturacién como restriccion, no se
incorpora en el disefio del controlador, limitando la interven-
cion del usuario sobre los limites de actuacion. Por otro lado,
Chen (2017) introduce un esquema de control robusto apoyado
en un observador de perturbaciones, logrando estabilidad me-
diante funciones de rendimiento prescrito. Sin embargo, este
trabajo tampoco contempla la saturaciéon directamente en el
control. Asif et al. (2016) exploran un esquema de control
por retroalimentacion de salida aplicando controladores adap-
tables tipo PID regularizados. Aunque logran resultados en
presencia de perturbaciones, su aproximacién carece de una
formulacion formal robusta ante saturacién de los actuadores.
El problema de seguimiento de RMU con Control por Mo-
dos Deslizantes (SMC) convencionales es abordado por varios
autores, como Mera et al. (2020), logrando la convergencia
a conjuntos cercanos a cero bajo ciertas condiciones. Rochel
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et al. (2022) usan técnicas de control por SMC de segundo
orden, como el algoritmo Super-Twisting (STA), conocido por
su robustez y capacidad de garantizar convergencia en tiempo
finito sin requerir derivadas de orden superior. No obstante,
estos enfoques suponen restricciones fuertes en los errores de
estado y no consideran saturacién explicita en el disefio.

Para resolver las limitaciones anteriores, se han propuesto va-
riantes del STA para entornos con control saturado. Castillo
et al. (2016) introduce una formulacién basada en Lyapunov
que garantiza estabilidad en tiempo finito mediante un término
correctivo adaptado a la saturacién. Por su parte, Golkani et al.
(2018) incorporan funciones de saturacion suaves en el STA,
permitiendo conservar la continuidad del control y atenuar el
chattering. Seeber and Reichhartinger (2020) usan una version
condicionada del STA que ajusta dindimicamente su ganancia
conforme el sistema se aproxima a los limites de saturacidn,
alternando entre modos segtin la magnitud del error. Una con-
tribucion clave se presenta por Seeber and Horn (2019), quie-
nes proponen un Algoritmo Super-Twisting Saturado (SSTA)
que no solo respeta explicitamente los limites de control im-
puestos por saturacion, sino que también garantiza continuidad
de la sefial de control y rechazo efectivo de perturbaciones
acotadas. Esta propiedad es crucial en sistemas fisicos reales,
como RMUs, donde discontinuidades en la sefial pueden re-
sultar perjudiciales. Su disefio simple, basado en estabilidad
por Lyapunov y sin requerir ganancias altamente moduladas ni
restricciones estructurales complejas como LMIs, lo convierte
en una base ideal para implementaciones précticas. El uso del
SSTA ha sido explorado en sistemas fisicos complejos como
vehiculos submarinos y barcazas por Cao et al. (2022), Gue-
rrero et al. (2024) y Lv et al. (2023) que emplean observadores
de velocidad, y con velocidades no medidas por Tijjani et al.
(2023) y Gao et al. (2024) que integran observadores robus-
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tos, asi como en misiles, Gong et al. (2022) implementa una
saturacién continua tipo tangente hiperbdlica que preserva la
continuidad del control.

El presente trabajo propone un controlador SSTA aplicado
especificamente al seguimiento de trayectoria de un RMU,
como una aportacién que combina:

= Robustez frente a perturbaciones acotadas, sin necesidad
de estimadores.

= Sefiales de control continuas y acotadas por disefio, aptas
para implementacion real.

= Estructura basada en teoria de estabilidad de Lyapunov,
sin depender de LMISs ni observadores de perturbaciones.

Este trabajo muestra que el control, trabajando de manera
saturada, permite el seguimiento bajo ciertas condiciones. Fi-
nalmente, el disefio propuesto se valida mediante simulacion
numérica, en un escenario con saturacioén y perturbaciones.

2. DESCRIPCION DEL SISTEMA Y PLANTEAMIENTO
DEL PROBLEMA

Considere un sistema de seguimiento compuesto por un RMU
con la configuracién:

x=(1—dj)vcos(0),

y=(1—dp)vsin(6), (1)

6= (1 — dz)a),
donde x,y € R son la posicién en x e y del robot en el marco
de referencia inercial, 8 € R es la orientacién en el marco
de referencia inercial. v € R 'y @ € R son las velocidades
lineal y angular, respectivamente. di,d, € R son perturbacio-
nes causadas por el patinado y deslizamiento de las ruedas,
respectivamente.

La trayectoria deseada estd dada por la siguiente dindmica:

Xq = Vg COS(Gd),

Ya = Vasin(6y), 2

Qd = Wy.
Suposicion 1. La velocidad y aceleracion, lineal y angular, de
la trayectoria deseada se asumen acotadas:

0 < vdmfn S Vd S vdméx’ |Vd| S ‘_/dmzix’
|0g] < @4, || < @,

donde Viin> Vs > Qs> Vg Y Dy SON constantes escala-
res positivas.
Suposicion 2. Las perturbaciones y sus derivadas son no me-
dibles pero estdn acotadas y sus cotas son conocidas, para
i=1,2,como |dj| < dmix < 1y |di| < dmix-

Esta suposicion es realista, ya que las perturbaciones que afec-
tan a la dindmica estan naturalmente limitadas por las restric-
ciones fisicas del sistema. Ademds, dichas perturbaciones no
varian de manera arbitrariamente rapida, lo cual se traduce en
que su derivada permanece acotada.

El objetivo de control es representado en términos del error de
seguimiento e € R3, el cual se describe como:

e=ler ey e3) =A(0)(P;—P) 3)

Xq
, Pa= l%f]
04

donde:
cos(6) sin(0) O X
A(0) = l—sin(@) cos(0) 01 , P= ly
0 0 1 0
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donde P,P; € R3 son el vector de postura del robot y el vector
de postura de la trayectoria deseada.

La tarea de control es llevar el error de seguimiento e a cero, a
pesar de la presencia de las perturbaciones d; y d», utilizando
entradas de control v y @, las cuales estan acotadas como:

|V| S Vméx s ‘V| S ‘_/méx
< | < @ @)
0] < Omax, O] < Brax
donde Visx, ®mix, Vmax Y Omax SON constantes escalares posi-
tivas que representan sus valores maximos.

Obtencion de la dinamica de los errores de seguimiento.

La dindmica de los errores de seguimiento se obtiene derivan-
do los errores en (3) como:

é1 = (1 —da)wes +div+vycos(ez) — v,
é = — (1 —dy)wey + vysin(e3),
é3=0;—(1-d)o.

3. DISENO DE CONTROL

Se propone el disefio de dos variables deslizantes, de tal forma
que cuando el sistema entre en el modo deslizante, los errores
de seguiminto converjan a cero:

O] (e, t) =e] (l>7

0> (e,1) =e3(t) + arctan(pe; (1)),
donde p > 0 es una constante escalar.

&)

La eleccién de la funcién arctan(pe;) en la definicién de la
superficie deslizante tiene como propdsito mantener acotada la
contribucion del error e;. A diferencia de un término lineal, la
funcién arcotangente presenta un rango limitado (—x/2,7/2),
lo cual actda como una saturacién natural que evita que valores
grandes de e, generen sefiales de control excesivas.

Entonces, las sefiales de control v(e,t) y @(e,t) se proponen
como sefiales continuas utilizando la siguiente estructura:
VdCOS(€3)+U1 LGl(e,l‘)-IO < Ty
v(e,t) = 1/2 . .
VdCOS(€3)+k1aL61(€,t)-| —vl(e,t) 1> Ty
. o 1t <1y
vi(er) = { —ky,sign(oy(e,t)) 1t >Ti.
o(e,t) = oy + Uzsign(oz(e,t)) 11 < Ty
VT @itk [0a(e,1)]V —valest) 11> T
) o 1t < T
va(e,1) = { —ko,sign(oa(e,t)) 1t > Ts.
Ty =inf{z : |oy(e,1)| < E2};
T, = inf{t : |0 (e,1)| < EF}s

(6)
donde [-]7 = |-|¥sign(-) para g € R>o, U; := Vimgx — Vi, >0
y Uz := Omax — @y, > 0. Los valores iniciales de vi y v2
se proponen como vi(0) = v,(0) = 0 y en el instante de
conmutacién como vi(7;) = v2(T2) = 0, por lo que para ese
instante las sefiales de control son:

V(T1) = vacos(es) + ki, [01(T1)]"/* = vi(Th)
= v, cos(e3) + ki, & sign(or(Th)),
o(T3) = gc0s(e3) +ka, | 02(T2)]'/* = va(T2)

3)
= 0ycos(e3) + ko, Ersign(o2(T2)).

Observe que las saturaciones [v| < vy . +Uy 0| <@g, +

U, se sostienen para todo t > 11 y t > 15, por lo que podrian
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remplazarse las condiciones t > T y t > T» por V| < vy . +
Uiy |o| < @y, + U, respectivamente. Ademds es necesario
que ki,&1 y k&2 no excedan Uy y U, para que las sefiales
de control v(T1) y o(T») respeten los limites establecidos
Vimix = VT U1 Y Omax = @y, + U>, respectivamente. Por
lo tanto, la continuidad de la senal de control en el instante de

conmutacion solo se garantiza bajo las condiciones & = kful Up
y& =k 'Us.

Teorema 1. Sea un RMU, con el modelo cinematico mostrado
en (1), y sea una trayectoria deseada dada en términos de la
solucién del modelo (2), satisfaciendo las Suposiciones 1 y 2.

Sean las variables deslizantes 07 y 0> dadas en (5). Entonces,
las leyes de control con saturacién v(e,t) y @(e,t) en (6) con
las ganancias de control p > 0, ki, > /2(k1, + A1), k1, > Ay,

> /2(ka, +A2), ko, > Az, Vimax Y Omax, garantizan la
convergencia de las variables deslizantes a cero en tiempo
finito. Lo que a su vez asegura la convergencia asintdtica del
error de seguimiento e, en (3), a cero.

Prueba: El andlisis de estabilidad se desarrolla usando teoria
de estabilidad de Lyapunov. Se siguen los mismos pasos de
la prueba del SST de Seeber and Horn (2019) adaptados
al modelo del RMU y para el par de variables deslizantes
propuestas en este trabajo.

Analisis de estabilidad de o (e,?):

Es necesario encontrar la regién de o} para la cual existe un
control v que satisface (4) garantizando su convergencia a
cero.

En el caso del control (6) se puede observar que justo en el
instante de conmutacion:

|v| < |vacos(es)|+ Ui | o1 (e,1)]°
<y

méx + Vmax — vdmzix = Vmix-
Por lo tanto |v| < Vipax, por lo que la prueba de cada variable
deslizante se divide en dos partes, cuando |V| = Vs, y cuando

|V| < Vmax, presentadas a continuacion.

- Cuando |v(e,t)| = Vmax:  En este caso es necesario identi-
ficar el comportamiento cuando [v(e,t)| = vy, +UI = Viniix-
Entonces, analizando el control y encontrando el conjunto
atractivo de o (e,?) para el cual el control v(e,7) no puede
sobrepasar ni deslizarse a lo largo del limite de saturacion:

D] _ Gan(v(e)ven)
= (\'/d cos(e3) — vysin(ez)é3 + %kla lo1(e,1)| /261 (e,1)

—vi(e,r))sign(v(e,t)).

Sustituyendo é3, &1(e,t) y vi(e,t) y aplicando desigualdades
para todos los elementos que tienen cota:

d|v(e,t
+(dmax — 1)( +U1)) +ki, .
donde y:= (1 + dméx)wméx-
Puede observarse que para garantizar que la derivada de la

sefial |v(e,r)| sea definida negativa, d‘v(e )l <0, de la expre-

sion anterior se tiene que satisfacer, tanto que:
Ui (1 —dpg;

|e2 | < ( de)

Y

- dméx Vdméx
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como que:

1 -
Ekla |Gl (67[)‘ 1/2(,}/‘62| + dméxvd

> klb + ‘_/dmeix + vdmzix wdmzix + deeix :

mix + Ul (dméx - 1))

@)

Despejando la variable oy (e,t) de (7), se obtiene el conjunto
atractivo de o (e,t) dado como:

1/2 < ki, (Y|62|+dméxvdmax+ul( max 1))
(klb + vdmax + vdmﬂx (odmax + ,)/Vdmax)

®)

|o1(e,1)]

Si oy(e,t) satisface esta cota entonces el control v(e,t) no
sobrepasard ni permanecerd en el limite de saturacién, por lo
que esta expresion se utilizard més adelante.

- Cuando |v(e,t)| < Vmsx: En esta parte de la prueba, se
utiliza la derivada de la primera variable deslizante mostrada
en (5), sustituyendo las sefales de control (6):

(1 —dz)w€2+dlv —ky, LG[ (e,tﬂ 1/2+V1(€,t),
—ky,sign(oy(e,t)).

Gl(e,t)z

Vl(e,t):

Se introducen los cambios de variable 6, := oy(e,t) y 0 :=
d\v +vi(e,t), y la perturbacién se define como 6(e,?) :=
div+d;v, entonces se obtiene la siguiente expresion:
6 = (1—dr)wer —ky, | 04]"/>
Op = _k]bSign(Ga) +61(e,t),
donde A; := dingx Vinax + dmax Vmax Y €l término |8y (e,1)| < A
estd acotado.

+ op,

Se propone el conjunto de curvas de nivel de Lyapunov:
W, (04)  if (04, 0p) € A;
VV2 (Gb)

Vy, (64, 0p) if (Ou,0p) € M3

donde Vy, (0,) := k%a|6a|, Vi, (0p
VV] (Ga) + sz (Gb), ademas:

Vv (04, 0p) = if (04,0p) € M,

) := o7 and Vy,(04,0) =

M = {(04,03) : 0 < 0psign(0,) < ki,|0a]'? — Ylea|},

My = {(04,0) : k1,|04|"? — ylea| < opsign(c,)},
M3 :={(04, 0p) : Opsign(o,) < 0}.

1/2

Note que del conjunto .#; se obtiene que k1, |0,|'/* > 7l]ea|.

Andlisis con Vy,(0,):  La funcién de Lyapunov se escoge
como Vy, (0,) := ki, |0, y su derivada se calcula como:

Vi, (04) = ki, 6,sign(o4)
=k} (1 —dr)wes — ki, |o,|'*sign(o,) + 03 )sign(oy)
<K (Ylea| = ki, | 0a|'* + opsign(oy).

Nétese que en el conjunto . las siguientes desigualdades
son satisfechas 0 < opsign(o,) < k1,|04|'/? — ¥|e2|. Aplicando
estas, la derivada de la funcién de Lyapunov es definida
negativa, Vy, (0,) <O0.

Andlisis con Vy,(0p):  La funcién de Lyapunov se escoge
como Vy, (0}) := 67 y su derivada se calcula como:

VVZ (0'[,) =26,0p = 2(—k1hsign(ca) + & (e,t))Gb. ©)]
Note que en el conjunto .7 la desigualdad 0 < ojsign(o,) se

satisface, aplicando esto, la expresion (9) estd dada como:
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Vv, (0p) = —2(k1, 0psign(0a) — 1 (e,7)0p)
= —20ysign(o,) (k1 — &1 (e,t)sign(oy,))
< —20psign(oy) (ki, — 81 (e,1)|).

Por lo tanto, la derivada de la funcién de Lyapunov es definida
negativa, Vy, (05) < 0, cuando |8 (e,t)| < Ay < ky,,.

Andlisis con Vy,(0,,0p):  Lafuncién de Lyapunov se escoge
como Vy, (04, 0p) := Vy, (04) + Wy, (0p) y su derivada estd dada
por:

Vi3 (G4, 03) = Vy, (G4) + Vi, (03)
= —k3 |0u|"? + opsign(oa) (K], — 2ki, +28 (e, 1)sign(c,))
+k%a(1 —dy) weysign(oy,).

Para este conjunto .3, la desigualdad opsign(o,) < 0 se
satisface, por lo que la expresion anterior estd dada como:

Vi, (04, 0p) < —ki‘ |0 12 4 6,sign(oy,) (k%a — 2k,
+281 (e, t)sign(04)) + k7, ¥lex|
< opsign(o,) (kf, —2(k, +Ap)).

Si el parametro k; se selecciona como ki, > \/2(ki, +Ay),
entonces la derivada de la funcién de Lyapunov es definida
negativa, Vy,(04,05) < 0. Lo cual implica la convergencia
asintética al origen de las variables (0,, 03). Por lo tanto, o
converge globalmente asintéticamente a cero o de acuerdo a
Seeber and Horn (2017) converge en tiempo finito, siempre y
cuando (8) se satisfaga.

Andlisis de estabilidad de o, (e,?):

En esta parte se aplica el mismo procedimiento que en el
andlisis de estabilidad de la primera variables deslizante.

En este caso es necesario identi-
@y, . +Us = Omyx.

Sustituyendo 6, (e, ) y v2(e,t) y aplicando desigualdades para
todos los elementos que tienen cota:

d|o(e,t _ 1 _

NOD] < g + L oae) 7 (o Fier] + Vi)

+U2 (dméx -1 ) =+ dmflx wdméx ) + kzb :

- Cuando |®(e,t)| = Omax:
ficar el comportamiento cuando |®(e,?)| =

Para garantizar que la derivada de la sefial |@(e, )| sea definida

dlo(e)]

negativa, ==, < 0, se tiene que satisfacer tanto que:

U2 (1 — dméx) - dmzix wdméx —p vdméx

|€1| <
pY

como que:

1 _
k2 62(e,1)[ 72 (p(Yler| + Va, ) + Us(dimax — 1) + dng @, . )

> k2b + @y

méx "

10)

Despejando la variable o0 (e,t) de (10), se obtiene el conjunto
atractivo de o, (e, ) dado por:

12 - ka, (p(Yler| + Vi, ) + Uz (dmix — 1) + dmix @a, ;)

11
Z(kzb + @y (h

lo2(e,1)]

max)

Si 0y(e,t) satisface esta cota entonces el control ®(e,t) no
sobrepasard ni permanecerd en el limite de saturacién, por lo
que esta expresion se utilizard més adelante.

Copyright® AMCA, ISSN: 2594-2492

- Cuando |@(e,t)] < Wmsx: En esta parte de la prueba, se
utiliza la derivada de la segunda variable deslizante mostrada
en (5), sustituyendo las sefiales de control (6):

_ P

p2e+1
— ko, | 02(e,1)]V% +va(e,1),

va(e,t) = —ky,sign(oz(e,t)).

(e t) = (—(1—dr)we; + vgsin(ez)) +dr @

Se introducen los cambios de variable 6, := 0»(e,t) y 0 :=

dr® + vy (e,t), y la perturbacién se define como & (e,t) :=

dro + dr @, entonces se obtiene la si guiente expreson:

-_ P
p2es+1

Ga = —kzbsign(Gc) +82(e,t),

donde Ay := dingx Omix + dinax Pmix Y €l término |3 (e,1)]| < Ay

estd acotado.

(—(1 —dg)())el +Vy sin(e3)) —kzu \_O'C-I 1/2+O'd,

c

El factor (pez’ﬁ atenua la influencia de ¢, a medida que

lez| aumenta. Para valores grandes de e, la dindmica de
0, es menos sensible a cambios en e;, esto no compromete
la estabilidad del sistema, ya que el disefio del controlador
garantiza que e, permanezca acotado y converja a cero.

Se propone el conjunto de curvas de nivel de Lyapunov:
Vo, (0c) i (0p,04) € Ma;

Vw(GmGd) = sz(Gd) Si (GC,Gd) S .///5;

Vw}(cmcd) si (66‘76d) S %69

donde Vi, (0;) := k3 |0, Vi, (04) := 07 and Vi, (0, 04) 1=
Vi, (0¢) + Vi, (04), ademas:

My ={(0:,04) : 0 < oysign(o:) < ka, |0c|'/? — p(¥ler| + Vi, )}

M5 :={(0:,64) ko, 0|/ = p(Vler |+ Vg, ) < Gusign(or)},

M = {(0c,04) : Ogsign(o.) < 0}.
Note que del conjunto ./, se obtiene que kp,|o.|'/? >
P(Yler]+ Vayg)-

Andlisis con Vg, (0;):  La funcion de Lyapunov se escoge
como Vy, (0;) := k%a |o.| y su derivada se calcula como:

124 Gdsign(dc)) .

Vor(00) <3, (PYle1]| + Vi, — ka0
Note que en el conjunto .#4, las desigualdades 0 < oysign(o,) <
ka,|oc|'% = p(¥le1| + Va,,, ) se cumplen, entonces, Ve, (0;) <
0.

Andlisis con Ve,(04):  Se escoge la funcién de Lyapunov
Ve, (64) := 02 y su derivada se calcula como:

sz(Gd) =26,0y :2(—k2bsign(0'6)+52(e7t))<7d. (12)

Note que en el conjunto .45, la desigualdad 0 < o sign(o;) se
satisface, aplicando esto, la expresion (12) estd dada como:

Vo, (04) < —20ysign(oc) (ka, — [8a(e,1)]).-

Por lo tanto, la derivada de la funcién de Lyapunov es definida
negativa, Vi, (04) < 0, cuando |6 (x,1)| < Ay < ky,.

Andlisis con Vg, (0.,04):  Se escoge la funcién de Lyapunov
Vs (Oc, 04) = Vi, () + Vi, (04) y dado que en el conjunto
59
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M la desigualdad oysign(o,) < 0 se satisface, la derivada estd
dada como :

Van (0¢,04) < —K3, |0 |"/? + oysign(oe) (K3, — 2k,
+28,(e,1)sign(0;)) + Pk, (Vler] + Vi)
< oysign(o;)(k3, — 2ka, —2A2)).

Seleccionando ky, > /2(k2, +A;), entonces la derivada de
la funcién de Lyapunov es definida negativa, Vi, (0;,04) <
0. Lo cual implica la convergencia asintdtica al origen de
las variables (o, 0y). Por lo tanto, 6, converge globalmente
asintéticamente a cero. De acuerdo a Seeber and Horn (2017)
converge en tiempo finito, siempre y cuando (11) se satisfaga.

Andlisis de estabilidad de e;(e,7): Para este momento de la
prueba se tiene que o1 = e; — 0y 0, — 0, entonces e3 =
—arctan(pex(t)), porlo que é>(e,t) =

Una vez que se alcanzan las superficies deslizantes la dindmica
del segundo error de seguimiento es auténoma, por lo que,
dada su dindmica estable, convergerd a cero. Aplicando la

o/ 12

identidad trignométrica sin(arctan(x)) = ={—7— se obtiene

per 1+pze%

que éz(e,t) =—Vy Tp2e

Utilizando la funcién candidata de Lyapunov V,, = %ez, se

obtiene que la derivada estd dada como:
pe3\/1+pes

\/1+p262
1+ p2e3

Ve2 d 1+ p2€ - dimin

Por lo tanto, como Ve2 < 0 para e; # 0, entonces el segundo
error de seguimiento e, converge asintdticamente a cero.

Analisis de estabilidad de e3(e,7):

Como consecuencia de la convergencia de e, () a cero, enton-
ces |e3| < —arctan(pe;(z)). Se observa que si |ez| — 0, enton-
ces |e3| — 0, en otras palabras, el tercer error de seguimiento
converge asintéticamente a cero.

Analisis para garantizar que v < vp;:

Considere el conjunto mds grande de la funcioén de Lyapunov
Vyv(oy,,0)), dentro del cual 6, = 0] estd acotado como en (8).
Este estd caracterizado por V, (0,,05) < ¢] con:

k% (7'62‘ + dmﬁxvdnm +U; ( mix — ) 2 }

Clmfn{VV(G“’Gb):G“lel +Vg AVe g YV )?
b méx max méx méx

Con el valor de |o,| de la expresién anterior, el minimo de
Vv (04, 0p) es alcanzado para .#, como:

e :inf{VvZ(Gb) oy| > k1a|Ga|1/2—y|e2|}
kfa (7le2] + dmax Vo + Ut (dmax — 1))?
4(k1b + ‘_/dméx + vdméx a)dm{\x + deéx )2

= Vv1 ((;a) =

Esto prueba que Vi (0,, 0)) estd acotado por una cota suficien-
temente grande para el conjunto .#, por lo que .#1 y /3
también estaran acotados, al ser conjuntos mas chicos que ..

El valor mas grande de Vy(0,,0}) en el instante de conmuta-
cién T, se determina a continuacién. En este instante |6, | = 512
yvi =0, porlo que 6, =d;v+vi(et) =dv.

Restringiendo consideraciones a valores positivos de o, debi-
do a la simetria por el valor absoluto, se puede encontrar el
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— vy sin(arctan(pex(2))).

valor mds grande de Vy (0,, 0p):

Vv (élz,dl\/) .

c» = max max
‘dl‘<dmaxlvl<vdmdx+U1
Se puede observar que el mdximo de la expresién anterior
se obtiene para .#3 (que al contemplar valores positivos
de o, entonces o, < 0) ya que Vy(0,,05) es mds chica
que los otros dos casos. Entonces, sustituyendo la expre-
sién anterior en Vy,(0,,0}), se obtiene que ¢ = Vv. (&7) +

VVZ (dméx(vdméx + Ul)) = k2a§1 +dr2nax ( dmax + Ul) :

Sicp < ¢y, es decir:

2
I3, EF + dagy (Vay +U1)
K, (Vleal + dmix Vi, + Ut (dimax — 1))
4(klb + ‘_/dmz'nx + vdmax dimax + ,yvdmax)

se cumple, entonces Vy, (0,,0),) < ¢ también se cumple en el
instante de conmutacién ¢ = Tj.

Como se probd en la seccién anteriores que Vy(0,,0p) es
no creciente a lo largo de las trayectorias 0, y Op, ya que
se garantiza que las derivadas son semi-definidas negativas,
entonces Vy, (04, 0p) < ¢) se cumple también para todo t > Tj.

Como se cumple que |v| = vy

max

+k1,&1 < Vinax en el instante

de conmutacién ¢ = 7} y ademds se probd que dM < 0,
entonces la cota |V| < V4 se cumple también para todot >T
y no se produce deslizamiento a lo largo de |V| = Viux.

Analisis para garantizar que © < @p;x:
Siguiendo el mismo procedimiento que en el andlis de v, se
obtiene que si 04 < c3 se cumple, es decir:
2
52 +d max (wdmx + Uz)
13 (p(Yler] + Vaye, ) + Uz (dimax —
< —
4(k2b g2

1)+ dmix 04,5, )?

entonces Vy(0,, 04) < c3 se cumple en el instante de conmu-
tacion t = T>.

Como se cumple que |@| = @y, +k>, & < Ons en el instante

de conmutacién ¢ = T, y ademds se probd que dlwl <0,
entonces la cota |@| < @y se cumple también para todo
t > T, y no se produce deslizamiento a lo largo de |®| = @px-

4. RESULTADOS DE SIMULACION

Se considera un RMU modelado por la cinemadtica (1).
La trayectoria deseada es una Rosa Polar, parametrizada
en el tiempo como x,4(t) = 2a(cos(wyt))?sin(wpt), ya(t) =

2a(sin(axt))? cos(wpt) y 6,(t) = arctan GZE;; ) ,cona=3[m]
y wp = 0.1 [rad/s].

Y las velocidades variantes en tiempo, dado que en las curvas
debe de ir més lento el RMU, estan dadas por:

. . XaYa — YaXa
va(t) = /55 (1) +35(0), AR

¢ ¢ (1) +y5(t)
El objetivo es que el agente siga la trayectoria deseada lidiando
con las perturbaciones causadas por el patinado de las ruedas

debido al terreno. Utilizando la notacién de (3), la postura
inicial se configura como P = (—1,—1,—7/4).

Se considera que el agente seguidor se controla por la ley
dada en el Teorema 1. Para las Suposiciones 1-2 los valores
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se establecen como v, . = 0.6 [m/s], ®g,, = 0.5 [rad/s],
Vg, . =0.06 [m?/s], @, =0.09 [rad®/s], Vimsx = 1.1 [m/s],
Omax = 1 [rad/s], Vmgx = 0.15 [m?/s], Omax = 0.25 [rad®/s],
U; =0.5y U, =0.5. Parala Suposicion 2 las expresiones de las
perturbaciones son d; = 0.2cos(t) +0.2 'y do = 0.1sin(27) +
0.2 por lo que las cotas estdn dadas como dp,sx = 0.4 Y dmix =
0.4. Entonces A; y A; pueden calcularse con base en las cotas
ded;,dr, vy @ como Ay = 0.5y Ay = 0.5. Las ganancias de
control respetan las desigualdades presentes en el Teorema 1 'y
estdn dadas porky, =2, kj, =1, kp, =2, kp, =1y p =0.5.

La Figura 1 muestra el comportamiento de las variables desli-
zantes, las cuales convergen a cero en menos de 8s. También
se observan los errores de seguimiento, una vez que las va-
riables deslizantes convergen a cero, estos alcanzan un valor
despreciable después de 20s. Las sefiales proporcionadas por el
control SSTA son mostradas en la Figura 2, note la ausencia de
chattering en ellas y que no llegan a los valores maximos, Viix
y Omax. respectivamente. Finalmente, en la Figura 3 se pre-
senta la trayectoria deseada y el seguimiento de esta por parte
del RMU. Una animacién utilizando los datos de la simulacién
numérica puede verse en https://youtu.be/torHn4pA4rU.

1.5¢

1k —%1%
©o05)
0 C L L L L L I
0 5 10 15 20 25 30
t[s]
o
[}
0 4 ] ] ‘ ‘ ‘ |
0 5 10 15 20 25 30
t[s]

Figura 1. Variables Deslizantes (0] y 62) y Errores de Segui-
miento (eg, e2 y e3).

t[s]

Cyiml

SIS
:

-3 -2 -1 0 1 2 3
x [m]

Figura 3. Seguimiento de Trayectoria.

5. CONCLUSIONES

En este articulo se utiliza un SSTA para solucionar el problema
de seguimiento de trayectoria de un RMU. La estrategia de

Copyright® AMCA, ISSN: 2594-2492

control garantiza la convergencia asintdtica de los errores de
seguimiento mediante un disefio particular de las variables des-
lizantes. Los resultados de la simulacién muestran la efectivi-
dad del control para seguir la trayectoria impuesta, y confirman
que los RMU alcanzan el objetivo de control en presencia de
perturbaciones con una sefal de control continua y saturada.
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