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Abstract: This paper presents an experimental validation of continuous high order sliding
mode algorithms through the design of sliding surfaces using modified Ackermann formulas.
The designed controllers are tested in a real experiment using a cart-pendulum setup. The order
of accuracy of the chattering amplitude and gain adjustment is considered in experimental
criteria.
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1. INTRODUCCIÓN

El Control por Modos Deslizantes (SMC, por sus siglas en
inglés), es un tipo de control robusto que busca resolver dos
problemas desafiantes en la implementación de algoritmos
de control (Utkin (2013)):

(1) Incertidumbres paramétricas: Son propias del mode-
lado del sistema o de la incapacidad de medir precisa-
mente los atributos como masas, inercias, etc.

(2) Dinámicas no modeladas: Son dinámicas que no
pueden ser modeladas matemáticamente de manera
precisa como la fricción no lineal, fenómenos parásitos
o perturbaciones desconocidas.

A ráız de esto, se introducen términos discontinuos en
el algoritmo de control, obteniendo el SMC de primer
orden, que provoca el efecto de chattering, el cual es
un castañeo que se presenta naturalmente en la señal
de control y que teóricamente cuenta con una frecuencia
de oscilación infinita. Es por lo anterior, que se han
desarrollado algoritmos de control continuo por modos
deslizantes de alto orden (HOSM, por sus siglas en inglés)
que permiten conservar las propiedades de robustez como
la convergencia en tiempo finito de los estados del sistema
y sus n primeras derivadas a una superficie deslizante
(Fridman et al. (2015)), pero reducen los efectos que el
chattering provoca.

Aunque el primer algoritmo para el diseño de contro-
ladores continuos por SMC, es el Super-Twisting (Levant
(1993)), se requiere que la variable deslizante escogida
tenga grado relativo uno; por lo cual, para aplicar la teoŕıa
a sistemas con grado relativo arbitrario, se generaliza el
algoritmo para órdenes superiores en Pérez-Ventura et al.
(2021), Mendoza-Avila et al. (2019) y Gutiérrez-Oribio
et al. (2021). Esto también provee otras propiedades; pues,
teóricamente, al contar con controladores continuos que
sean del mismo orden que el grado relativo de la variable
deslizante, el diseño de una superficie no es necesario y el

chattering no debeŕıa existir; sin embargo, por efecto de
las dinámicas no modeladas, el grado relativo no está bien
definido; y, por lo tanto, se espera que experimentalmente
exista este efecto pero con amplitud y frecuencia finita.

En este art́ıculo se presenta la comprobación experimental
de los controladores continuos por HOSM en la planta
inverted cart-pendulum (carro péndulo en español), la cual
es un sistema subactuado que ha sido de gran estudio en
el área de control (Zhao and Spong (2001)); y es de gran
utilidad para comprobar el efecto que el chattering provoca
en los actuadores mecánicos y en el comportamiento de la
planta. Dentro del estado del arte, el diseño de las superfi-
cies deslizantes para la implementación experimental se ha
realizado con técnicas LQ (Mendoza-Avila et al. (2017)),
mientras que los controladores continuos por HOSM han
sido reportados en sistemas subactuados similares (Anaya
and Fridman (2023)); en estos trabajos se muestra que al
utilizar superficies diseñadas por LQ se presentan proble-
mas experimentales en el orden de precisión de la variable
deslizante, pues no cumple con los resultados predichos en
la teoŕıa; por lo tanto, en este art́ıculo se propone el diseño
de superficies mediante la técnica de Ackermann-Utkin
(Castillo et al. (2016)), con el fin de examinar y comparar
su desempeño en los controladores de orden superior. La
principal aportación de este trabajo, es la comprobación
experimental de la precisión y robustez teórica de estos
controladores continuos utilizando la técnica de diseño
de superficies deslizantes antes mencionada, además de
estudiar el efecto que los ajustes de ganancias pueden
provocar en el desempeño de los controladores.

Este art́ıculo está organizado de la siguiente manera: en la
Sección 2 se presenta el modelo lineal del carro péndulo.
Posteriormente, en la Sección 3 se diseñan las superficies
deslizantes mediante la formulación de Ackermann-Utkin
(AU). Dentro de la Sección 4 se presentan los algoritmos de
control continuo por HOSM. La validación experimental
de los controladores se muestra en la Sección 5. Final-
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Fig. 1. Carro Péndulo (Quanser (2012)).

mente, las conclusiones del trabajo se presentan en la
Sección 6.

2. MODELO DEL CARRO PÉNDULO

El carro péndulo utilizado es el Linear Inverted Pendulum
diseñado por la marca canadiense Quanser, el cual consta
de un carro actuado mediante un motor DC y un péndulo
subactuado por el mismo carro (Figura 1). El modelo lineal
(respecto al punto de equilibrio inestable) de la planta
dado en Quanser (2012) es

ẋ = Ax+Bu,

y = Cx+Du,
(1)

con
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T
.

Donde Mp es la masa del péndulo, lp es la longitud del
péndulo, g es la aceleración debida a la gravedad, Jp es
el momento de inercia del péndulo, Jt es el momento de
inercia del sistema total, Jeq es el momento de inercia en el
carro, Beq es el coeficiente de disipación viscosa del carro,
Bp es el coeficiente de disipación viscosa del péndulo, xc es
la posición del carro en el eje X en metros y α es el ángulo
del péndulo en radianes. Los parámetros son mostrados en
la Tabla 1.

Es importante demostrar que el sistema es controlable y
observable.

Table 1. Parámetros de la planta

Parámetro Magnitud Unidades

Mp 0.127 kg
lp 0.3365 m
g 9.81 m

s2

Jp 0.0012 kg ·m2

Jt 0.0111 kg ·m2

Jeq 0.7011 kg ·m2

Beq 4.3 N·m·s
rad

Bp 0.0024 N·m·s
rad

2.1 Controlabilidad

Utilizando las matrices del sistema de la ec.(1), se obtiene
la siguiente matriz de controlabilidad,

C =

 0 127.02 −771.6 55576.67
0 348.4 −2170.08 999235.51

1.41 −8.55 615.52 −7336.41
3.86 −24.03 11066.76 −80219.44

. (2)

La matriz de la ec.(2) es de rango completo y por lo tanto
el sistema (1) es completamente controlable.

2.2 Observabilidad

Utilizando las matrices del sistema (1), se obtiene la
siguiente matriz de observabilidad,

O =



1 0 0 0
0 1 0 0
0 0 90.29 0
0 0 0 90.29
0 146.06 −546.19 −0.83
0 2830.17 −1498.14 −16.2
0 −909.77 3317.88 13193.49
0 −2931.36 9331.34 255557.51


. (3)

La matriz de la ec.(3) es de rango completo por columna
y por lo tanto el sistema (1) es completamente observable.

2.3 Forma Regular

Para poder diseñar los controladores continuos por HOSM
conviene llevar al sistema de la ec.(1) a la forma regular,
mediante la transformación,

z = Tx =

−308602.43 19.57 127.02 0
0 0 348.4 0
0 −3417.84 0.2167 1.41
0 0 0 3.86

x, (4)

tal que el sistema transformado es,

ż = Arz +Bru, (5)

con

Ar =

0 1 0 0
0 0 1 0
0 0 0 1
0 14696.73 2829.24 −6.23

, (6)

Br = [0 0 0 1]
T
. (7)

https://doi.org/10.58571/CNCA.AMCA.2025.024

XX Congreso Latinoamericano de Control Automático (CLCA 2025)
13-17 de Octubre, 2025. Cancún, Quintana Roo, México

Copyright© AMCA, ISSN: 2594-2492
139



Se puede observar que la matriz (6) consta de una cadena
de integradores y el control aparece hasta el estado ż4; aśı
se comprueba que el sistema transformado de la ec.(5) es
de grado relativo 4; y, por lo tanto, es posible aplicar los
algoritmos de control desde primero y hasta cuarto orden.

3. DISEÑO DE SUPERFICIES DESLIZANTES
MEDIANTE ACKERMANN-UTKIN

Para el diseño mediante la formulación AU (Castillo et al.
(2016)) se propone construir la superficie de deslizamiento
utilizando posicionamiento de polos, mediante la expresión

CSMCT = [0 0 0 1]F−1γ(Ar), (8)

donde F es la matriz de controlabilidad del sistema trans-
formado (5) y γ(Ar) es el polinomio deseado evaluado en
la matriz transformada. De esta manera, solo es necesario
definir los polos deseados y obtener su polinomio asociado.
Como la superficie se diseña con el sistema transformado,
es necesario realizar la transformación inversa para apli-
carse al sistema (1), mediante la expresión,

CSMC = CSMCTT
−1. (9)

Aśı, la variable deslizante queda determinada por

σ = CSMCx. (10)

En todos los casos se eligieron polos estables que no son
tan rápidos, debido a que de lo contrario, la dinámica en
la superificie obligaŕıa al sistema a converger exponencial-
mente de manera equivalente, lo que provoca acciones de
control muy violentas y por lo tanto irrealizables por el
actuador (el cual soporta únicamente valores de voltaje
|V | < 24[V ]). Los polos seleccionados son:

• Primer Orden. Se seleccionaron los polos

p1 = [−19,−2.5 + 12.5i,−2.5− 12.5i],

→ γ1(Ar) = A3
r + 24A2

r + 257.5Ar + 3087.5I.

Donde I ∈ R4×4 es la matriz identidad.
• Segundo Orden. Se seleccionaron los polos

p2 = [−5.5 + 11.5i,−5.5− 11.5i],

→ γ2(Ar) = A2
r + 11Ar + 162.5I.

• Tercer Orden. Se seleccionó el polo

p3 = [−20],

→ γ3(Ar) = Ar + 20I.

• Cuarto Orden. No es necesario el diseño de la
superficie deslizante mediante este método, pues el
sistema (1) es de grado relativo cuatro.

4. CONTROLADORES CONTINUOS POR HOSM

Considerando la variable deslizante σ con grado relativo
ρ respecto a la entrada de control u, la estructura de
los controladores continuos mediante HOSM está dada en
Pérez-Ventura et al. (2021), Mendoza-Avila et al. (2019)
y Gutiérrez-Oribio et al. (2021), por

ρ = 1 : v1 = −1.5
√
L⌈σ1⌋

1
2 + s,

ṡ = −1.1L⌈σ1⌋0.
(11)

ρ = 2 : v2 = −2.7L
2
3 ⌈σ2⌋

1
3 − 5.3L

1
2 ⌈σ̇2⌋

1
2 + s,

ṡ = −1.1L⌈σ2⌋0.
(12)

ρ = 3 : v3 = −1.3L
3
4 ⌈σ3⌋

1
4 − 2.2L

2
3 ⌈σ̇3⌋

1
3

− 3L
1
2 ⌈σ̈3⌋

1
2 + s,

ṡ = −0.09L⌈σ3⌋0.

(13)

ρ = 4 : v4 = −1.1L
4
5 ⌈σ4⌋

1
5 − 1.9L

3
4 ⌈σ̇4⌋

1
4

− 2.6L
2
3 ⌈σ̈4⌋

1
3 − 2.8L

1
2 ⌈ ...σ 4⌋

1
2 + s,

ṡ = −0.002L⌈σ4⌋0.

(14)

Con ⌈σ⌋r = |σ|r sign(σ) y L > |f (ρ)
0 (t)|, donde f0(t) es

la perturbación acoplada en la entrada. Los controladores
mostrados en las ecs.(11)-(14), son los que se presentan
una vez que se entra al modo deslizante; sin embargo, para
llevarlo al regimen deslizante y compensar las dinámicas
conocidas, es necesario utilizar el control nominal, tal que
el control total es

uρ =
vρ − CSMCρA

ρx

CSMCρAρ−1B
. (15)

Mediante el análisis por función descriptiva, en Pérez-
Ventura and Fridman (2019a) y Pérez-Ventura and Frid-
man (2019b) se presenta la propiedad de que utilizando
controladores continuos mediante HOSM, el orden de pre-
cisión O de la amplitud del chattering en la variable
deslizante disminuye en función de la constante de tiempo
de la dinámica parásita µ y el grado relativo ρ, de esta
forma

|σρ| ≤ O(µρ+1). (16)

Aunque el algoritmo del Super-Twisting usualmente se
utiliza como en la ec.(11), en este trabajo se propone hacer
una comparación con el método de ajuste de ganancias
propuesto en Iglesias-Rios et al. (2024) y Medvedeva et al.
(2024); que, para el sistema (1) resulta en la siguiente
modificación,

v1M = −0.8
√
L⌈σ1⌋

1
2 + s,

ṡ = −1.1L⌈σ1⌋0.
(17)

Donde v1M se entiende como la ley de control modificada
con el ajuste de ganancias.

5. VALIDACIÓN EXPERIMENTAL

La entrada de control de la ec.(15), con respecto a cada
grado de controlador, se aplicó al sistema Carro Péndulo
de Quanser con el fin de comprobar experimentalmente su
comportamiento. Se utilizaron los siguientes parámetros
de diseño, basados en los polos elegidos en la Sección 3:

• Primer Orden.
L = 0.3,

CSMC1 = [−0.01 0.072 −0.075 0.286] .
(18)
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• Segundo Orden.

L = 0.3,

CSMC2 = [−0.0005 0.0031 −0.0032 0.0012] .
(19)

• Tercer Orden.

L = 0.3,

CSMC3 =
[
−6.48× 10−5 2.38× 10−5 −0.0003 0.0001

]
.

(20)

• Cuarto Orden.

L = 0.2,

CSMC3 =
[
2× 10−4 0 1.2× 10−5 0

]
.

(21)

Aunque se mencionó que teóricamente no es necesario
el diseño de una superficie deslizante para el caso de
cuarto orden, experimentalmente fue necesario agregar un
término en el estado x3 en (21) con el fin de compensar
de manera emṕırica una perturbación no acoplada en el
péndulo.

Los resultados se muestran en las figuras 2-5 y en la Tabla
2, donde los controladores se encienden entre los tiempos
t = 2[s] − 5[s]; se grafican únicamente las posiciones x1

y x3, las variables deslizantes σρ y la entrada de control
uρ; en cada variable deslizante se realiza un zoom entre
los segundos t1 = 10[s] y t2 = 14[s], pues es la zona donde
se presenta más chattering una vez que se estabiliza el
sistema; y, el tiempo de muestreo es τ = 1[ms].

Fig. 2. Resultados Experimentales Controlador 1er Orden.

Table 2. Amplitud del Chattering en la Vari-
able Deslizante σ sin Perturbación

Orden Cota

1 No Ajustado 1× 10−3

1 Ajustado 0.6× 10−3

2 2.5× 10−4

3 3× 10−5

4 6× 10−6

En la Figura 2 se observa la comparación entre el algoritmo
Super-Twisting sin ajuste de ganancias de la ec.(11) y con
ajuste de ganancias de la ec.(17). En primera instancia
se observa que las oscilaciones de la posición del carro
en el caso sin ajuste de ganancias tienen un valor más
irregular en su amplitud y en su centro, pues no oscila con
respecto a cero en todo momento. Lo anterior se hace más

Fig. 3. Resultados Experimentales Controlador 2do Orden.

Fig. 4. Resultados Experimentales Controlador 3er Orden.

Fig. 5. Resultados Experimentales Controlador 4to Orden.

evidente en la variable deslizante, pues al analizar las cotas
de la amplitud del chattering una vez que se estabiliza el
sistema, la reducción de este efecto es de aproximadamente
el 40% para el caso donde se ajustó la ganancia.

Uno de los efectos que los controladores por modos
deslizantes presentan, es la oscilación de los estados una
vez que se alcanza el regimen deslizante, lo cual se de-
muestra en todos los controladores. A pesar de ello, se
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tiene un correcto funcionamiento del objetivo de control
que es estabilizar las posiciones del carro y del péndulo; y
es f́ısicamente imposible mantener al péndulo cerca de su
punto de equilibrio inestable sin tener oscilaciones en la
posición del carro.

En la tabla 2 se demuestra que el orden de precisión de la
amplitud del chattering en la variable deslizante disminuye
aproximadamente en un orden de magnitud escalar en
función del aumento del orden del controlador; y, por ello,
es posible encontrar que la constante de tiempo de la
dinámica parásita tiene un valor cercano a µ = 0.1. Cabe
mencionar, que aunque seŕıa posible mejorar la precisión
mediante la reducción del tiempo de muestreo τ (Anaya
and Fridman (2023)), el comportamiento del sistema está
limitado por sus componentes f́ısicas, como las tarjetas de
adquisición, los sensores o los actuadores.

Al comparar el desempeño de los cuatro controladores, es
posible determinar que, aśı como aumenta el orden de la
precisión en la amplitud del chattering conforme se incre-
menta el orden del controlador, también aumentan algunos
efectos negativos de la teoŕıa como lo es la exigencia en
el actuador. Aunque se podŕıa pensar que el controlador
de cuarto orden (Figura 5) es el que mejor desempeño
presenta, notamos que le exige al actuador una acción de
control mucho más demandante en comparación con todos
los órdenes anteriores. Por su parte, los controladores de
orden 1 y 3, a pesar de no demandar una actuación tan
intensa, presentan oscilaciones con amplitudes mayores
que para los controladores de orden 2 y 4; es por ello, que el
controlador que mejor balance, entre demanda energética
en el actuador y precisión en la amplitud del chattering
presenta, es el controlador de segundo orden, también
conocido como PID-like.

Para comprobar la robustez del sistema se agregó una
dinámica extra al péndulo, mediante el uso de una masa
m = 0.5[kg] centrada en un péndulo flexible; esta dinámica
se puede considerar una perturbación acoplada, por lo
cual se espera que al aumentar el parámetro L se logre
compensar; de esta manera, se ajustan todos los valores
de L a L = 3. Los resultados se muestran en las Figuras
6-9 y en la Tabla 3.

Fig. 6. Resultados Experimentales Controlador 1er Orden
(Perturbado).

Fig. 7. Resultados Experimentales Controlador 2do Orden
(Perturbado).

Fig. 8. Resultados Experimentales Controlador 3er Orden
(Perturbado).

Fig. 9. Resultados Experimentales Controlador 4to Orden
(Perturbado).

A partir de los resultados mostrados en las Figuras 6-9, se
encuentra que los controladores de orden 1, 2 y 3 tienen
un desempeño correcto al compensar las perturbaciones
en el sistema, manteniendo las propiedades de precisión
en la amplitud del chattering (acorde con la Tabla 3) y
la demanda en la actuación; esto comprueba una de las
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Table 3. Amplitud del Chattering en la Vari-
able Deslizante σ con Perturbación

Orden Cota

1 No Ajustado 5× 10−3

1 Ajustado 2.5× 10−3

2 2.5× 10−4

3 1× 10−4

4 N/A

virtudes de la teoŕıa de control por modos deslizantes, que
es la robustez ante incertidumbres y perturbaciones.

Para el caso del controlador de cuarto orden (Figura 9), no
fue posible realizar el objetivo de control; pues, a pesar de
que la teoŕıa nos indica que al tener un sistema con variable
deslizante de grado relativo 4, es posible controlarlo de
manera más precisa con un controlador de cuarto orden,
el sistema carro péndulo tiene dinámicas parásitas que
fungen como perturbaciones desacopladas, las cuales no
pueden ser compensadas completamente por controladores
continuos sin el diseño de una superficie deslizante ade-
cuada. Una vez más se denotan las limitaciones que el
sistema real impone en la implementación del control.

6. CONCLUSIONES

A partir de los resultados experimentales y la discusión
realizada en la Sección 5, se obtienen las siguientes con-
clusiones:

• El método de diseño de superficies deslizantes por la
ecuación de Ackermann-Utkin, permite implementar
controladores continuos por HOSM que cuentan con
un correcto desempeño en el objetivo de estabilizar
las posiciones del carro y del péndulo en su punto de
equilibrio inestable.

• Los controladores cumplen con la propiedad de pre-
cisión en la amplitud del chattering sobre la vari-
able deslizante presentada en Fridman et al. (2015)
y Pérez-Ventura and Fridman (2019b).

• El ajuste de ganancias en el algoritmo de primer orden
(Super-Twisting) presenta un mejor comportamiento
experimental, reduciendo en ∼ 40% la amplitud del
chattering, tanto en el caso sin perturbaciones como
en el caso perturbado.

• Los controladores continuos por HOSM presentan
propiedades de robustez ante incertidumbres en el
modelo y perturbaciones acotadas acopladas en la
entrada.

• El controlador que mejor desempeño demuestra para
el sistema carro péndulo con y sin perturbaciones, es
el de segundo orden, conocido como PID-like.

• En todos los casos, es posible mejorar el desempeño
de los controladores y su precisión si se reduce el
tiempo de muestreo y se compensan las dinámicas
parásitas presentes en los sensores y actuadores del
sistema. Esto demuestra que las limitaciones f́ısicas y
tecnológicas del sistema se traducen en limitaciones
de las propiedades predichas en la teoŕıa de SMC.
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and Fridman, L. (2021). Reaction wheel pendulum con-
trol using fourth-order discontinuous integral algorithm.
International Journal of Robust and Nonlinear Control,
31(1), 185–206.
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