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Abstract: Chaos phenomena have been the subject of study for decades. Even now, it remains
a trending topic, as new effects are continually discovered, such as hidden attractors, fractional-
order variants, and multistability, to name a few, which continue to open and expand the
frontiers for chaos-based applications. Herein, this paper presents a new complex-valued chaotic
system with striking characteristics, including hidden attractors that coexist with multistability
and extreme multistability. In particular, the proposed system possesses two equilibrium points
with positive real parts, indicating that both equilibria are stable. Surprisingly, the proposed
systems generate chaos for a determined set of parameters. Analytical formulations are given
to demonstrate the conditions for chaos emergence. Additionally, the chaotic behavior is
numerically described using bifurcation diagrams and phase portraits.
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1. INTRODUCTION

Chaos is a phenomenon that occurs in both living and non-
living systems. Its main characteristic is its high sensitivity
to initial conditions, which is associated with various appli-
cations in science and engineering Strogatz (2024). From
a theoretical perspective, chaos has been studied within
the framework of nonlinear dynamical systems, typically
involving at least three differential equations in the case
of continuous-time dynamical systems Devaney (2018).
Furthermore, continuous-time chaotic systems, such as the
well-known Lorenz, Chen, Lü, etc., are typically described
in the real domain since the concept of an equilibrium
point is only defined in the vector space of real num-
bers Yang and Chen (2014).

However, through specific algebraic manipulations, it is
possible to transform a chaotic system from Rn to Cn; that
is, both variables and parameters are now represented as
complex numbers, i.e., as a two-dimensional vector space
over the field of real numbers Rn. See Jin et al. (2022);
Gomez-Mont et al. (2012); Moghtadaei and Golpayegani
(2012); Munoz-Pacheco et al. (2021); Yuan et al. (2015);
Shoreh and Mahmoud (2024); Zhao et al. (2025). This
indicates that the system in the complex domain is now ex-
pressed as an extended high-dimensional system, allowing
its analysis and simulation using traditional chaos theory
tools.

On the one hand, it is well known that a chaotic sys-
tem is characterized in phase space by the presence of a
strange attractor, which should possess sensitivity to ini-
tial conditions, transitivity, and a dense set of periodic or-
bits Devaney (2018). Currently, nonlinear dynamical sys-
tems can exhibit two types of attractors: self-excited and

hidden Pham et al. (2017). In the former, an equilibrium
point intersects the basis of attraction and is therefore
easily observable. On the other hand, hidden attractors do
not always intersect with their basis of attraction Leonov
et al. (2011). Furthermore, hidden attractors can also be
found in dynamical systems without equilibrium points,
with an infinite number of equilibrium points, and even
in systems with stable equilibria, which remains an open
field of research.

In this framework, it is rare to find chaotic systems in the
complex domain with hidden attractors whose equilibrium
points are all stable. Even rarer is the emergence of diverse
dynamics such as bistability, multistability, and extreme
multistability in such systems. Some examples are Jin et al.
(2022); Ren et al. (2023) but without stable equilibria.
Bistability is understood as the presence of two attractors
in phase space, resulting from a change in the initial condi-
tions. Multistability results in different qualitative behav-
iors in a given nonlinear dynamical system for the same
parameter values. Finally, extreme multistability is a kind
of special multistability which is related to infinitely many
attractors, i.e., new attractors are generated as a function
of very small variations in the initial conditions Muñoz-
Pacheco (2019). That is, the attractors of classical systems
such as the Lorenz, Chua, and Chen systems in their
original versions always converge to the same attractor in
phase space, even when the initial conditions are changed
within the parametric chaotic region. Meanwhile, chaotic
systems with hidden attractors and extreme multistability
can present chaotic attractors in any area of phase space
under minimal variations in their initial conditions. Those
key properties, along with an increased number of system
variables, can be helpful to improve security in chaos-based
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encryption algorithms Ayubi et al. (2023); Zhao et al.
(2024)

In this paper, we present a novel Lorenz-type chaotic
system in the complex domain that generates hidden ex-
treme multistability with stable equilibria. Analytical and
numerical analyses demonstrate the attributes of the new
system. Section 2 gives the theoretical formulation for
chaos generation in the proposed complex chaotic system.
Section 3 presents the numerical results, including bifur-
cation diagrams and the localization of chaotic attractors.
Finally, the conclusion is given in Section 4.

2. DYNAMICS OF THE NEW COMPLEX CHAOTIC
SYSTEM WITH HIDDEN ATTRACTORS

The Lorenz system has consistently generated consider-
able interest and a substantial number of investigations
into three-dimensional (3D) autonomous chaotic systems
featuring simple nonlinearities and distinct stability con-
ditions. Interestingly, Ref. Yang et al. (2010) proposed an
unusual 3D autonomous chaotic system (1) in R3, which
is quite different from the other Lorenz-like systems for
having two stable equilibrium points but contains, as spe-
cial cases, the diffusionless Lorenz system, the Burke–Shaw
system under specific transformations.

ẋ = a(y − x),

ẏ = −by − xz, (1)

ż = xy − c.

Based on the generalized Lorenz system (1) with (x, y, z) ∈
Rn, a new complex chaotic system with hidden attractors
is proposed in this section. Remarkably, this new system
presents hidden attractors with stable equilibrium points
as a function of the chosen transformation. In particular,
the complex, hidden attractor chaotic system with stable
equilibrium points also generates extreme multi-stability, a
characteristic that is highly unusual in this kind of system.
The following subsections describe the basic properties and
dynamic behaviors of the new system. It is important to
remark that the selection of system (1) relies on the fact
that it has only stable equilibrium points. In this manner,
we could select any other system with similar properties
to transform it to the complex domain without loss of
generality.

2.1 Lorenz-type chaotic system with two stable equilibrium
points and extreme multistability

In this paper, we propose the complex extension of sys-
tem (1) as follows:

ż1 =
a

2
(z2 + z̄2)− az1,

ż2 = −bz2 − z1z3, (2)

ż3 = z1z2 − c,

where z1 = u1 is the real state variable, z2 = u2 + ju3

and z3 = u4+ ju5 are complex state variables, a and b are

positive constant parameters, and c = cr+jci is a complex
constant parameter. The overbar z̄2 denotes the complex
conjugate of z2. System (2) can be recast as a real-variable
system f(uk) of the form:

u̇1 = a(u2 − u1),

u̇2 = −bu2 − u1u4,

u̇3 = −bu3 − u1u5, (3)

u̇4 = u1u2 − cr,

u̇5 = u1u3 − ci,

where uk with k = 1, . . . , 5 represents the state-variables
of the expanded system obtained from complex system (2).
The divergence of vector fields of states of the system (3)
can be described as

∇V =

5∑
k=1

∂u̇k

∂uk
= −(a+ 2b), (4)

as long as a+ 2b > 0, the system is dissipative. Thus, the
volume of the system trajectory converges exponentially to
the origin with an exponential contraction rate of −(a +
2b). Additionally, system (3) has rotational symmetry
with respect to the u4, and u5-axes, due to its invariance
under the coordinates transform from (u1, u2, u3, u4, u5) to
(−u1,−u2,−u3, u4, u5). Since the rotational symmetry can
lead to attractors with symmetric scrolls, it can generate
many identical attractors located symmetrically in phase
space. In security applications, rotational symmetry can be
useful for key space expansion, as it provides an additional
control parameter. The corresponding Jacobian matrix of
system (3) is expressed by:

J =


−a a 0 0 0
−u∗

4 −b 0 −u∗
1 0

−u∗
5 0 −b 0 −u∗

1
u∗
2 u∗

1 0 0 0
u∗
3 0 u∗

1 0 0

 . (5)

From f(uk) = 0, the equilibrium points EP are:

EP1,2 = (u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5) (6)

=

(
±
√
cr,±

√
cr,∓

(
ci√
cr

)
,−b,

bci
cr

)
.

The equilibrium point exists if the real part of the complex
parameter c is not zero, i.e, cr ̸= 0. To analyze the stability
of equilibrium points, we state the following theorem.

Theorem 1. Suppose the parameters of system (2) are
positive, a, b, cr > 0. Then, the stability of its EPj with
j = 1, 2 has the following property:

• If b > a, system (2) is stable with two stable node-
foci equilibrium points, and it may produce hidden
attractors.

Proof. By considering that the characteristic equation of
(5) evaluated at EPj with j = 1, 2, is:
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s5 + (a+ 2b)s4 + (ab+ b2 + 2cr)s
3 + (3acr + 2bcr)s

2

+(2abcr + c2r)s+ 2ac2r = 0.
(7)

Applying the tabular approach of the Routh-Hurwitz stabil-
ity criterion, we obtain the elements of the first column. As
is well known, the number of sign changes in the first col-
umn will be the number of non-negative roots. Therefore,
the complex system (2), is stable if and only if satisfies the
following conditions.

i. a+ 2b > 0,

ii. ϕ1 + ϕ6 > 0,

iii.
ϕ2 + ϕ7

ϕ3 + ϕ8
> 0,

iv. −b(−b+ a)(ϕ4 + ϕ9)

ϕ5 + ϕ10
> 0,

v. 2ac2r > 0.

(8)

Since the parameters (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) are positive, it is
easy to demonstrate that (ϕ6, ϕ7, ϕ8, ϕ10) > 0 and ϕ9 > 0,
when b > a

2 and b > a, respectively. In this manner, the
stability of system (2) is only controlled by the numerator
of condition (iv), that is [−(−b+a)]. As a result, if b > a,
there are no sign changes, and all roots have a negative
real part, and thus, EP1,2 are stable.

3. HIDDEN CHAOTIC ATTRACTOR
LOCALIZATION

As is well known, the most overwhelming chaotic systems
are from unstable saddle points. However, further studies
have shown that the self-excited periodic and chaotic os-
cillations do not provide exhaustive information about the
possible types of oscillations, i.e., hidden oscillations and
hidden attractors.

Definition 1. An attractor is called a self-excited at-
tractor if its basin of attraction intersects with any open
neighborhood of an equilibrium point; otherwise, it is called
a hidden attractor. It also includes dynamical systems with
no equilibrium points, an infinite number of equilibrium
points, and stable equilibrium points Pham et al. (2017);
Leonov et al. (2011).

A few rare cases of complex-valued systems with hidden at-
tractors and extreme multistability have been introduced
in the literature. The necessary conditions for chaotic
behavior in the complex Lorenz-type system (2) are Eq. (4)
and Theorem 1. For the case of the hidden attractor with
two stable equilibrium points, we must select b > a; thus,
a = 10 and b = 10.1, with cr = 100, ci = 0, and initial
conditions (1, 1 + j2000, 0.1 + j2000). For all simulations,
the time step is h = 0.01. It is important to remark
that in the proposed system (2), z1, z2, z3 are complex
variables composed by their real (u1, u2, u4) and imaginary
(u3, u5) parts. Therefore, in our simulations, we set the
initial conditions for the real and imaginary parts of the
complex-valued system (2). It is worth noting that if we
choose u3 = u5 = 0 for the imaginary parts, we recover
the original system (1).

3.1 Hidden extreme multistability

Under the mentioned system parameters, we have the
following equilibrium points EP1,2 = (u∗

1, u
∗
2, u

∗
3, u

∗
4, u

∗
5) =

(±10,±10, 0,−10.1, 0). So, the eigenvalues are given by
λ1 = −20.08, λ2,3 = −0.01 ± j9.98, λ4,5 = −5.05 ±
j8.63, which means EP1,2 are stable node-foci equilib-
rium points. Similarly, we have the equilibria EP1,2 =
(u∗

1, u
∗
2, u

∗
3, u

∗
4, u

∗
5) = (±10,±10,∓10,−10.1, 10.1), for the

case where the parameter c is also considered as com-
plex number, i.e., cr = 100, ci = −100. As a result,
the eigenvalues are λ1 = −20.08, λ2,3 = −0.01 ± j9.98,
λ4,5 = −5.05 ± j8.63, which means EP1,2 are also stable
node-foci equilibrium points.

Figure 1(a)-(b) presents the phase portraits of the hid-
den chaotic attractors for real (u1, u2, u4) and complex
variables (u3, u5) for the proposed complex-valued Lorenz-
type chaotic system (2). To demonstrate its sensitivity to
initial conditions, we perform a slight variation in the ini-
tial condition of the real variable u2 and compute the time
series of the complex variable u3 as shown in Figure 1(c).

In addition, the phenomenon of extreme multistability is
found by changing the initial condition of the complex
variable u3, which produces a shrinking and stretching
movement in the chaotic attractor as can be seen in
Figure 1(d).
Definition 2. A chaotic system is said to converge to
extreme multistability if its response leads to entirely dif-
ferent qualitative behavior for the same parameter values
with minimal variation in its initial conditions. That is,
extreme multistability is a special type of multistability
associated with infinite hidden attractors. Therefore, new
attractors are generated based not only on minimal varia-
tions in the initial conditions but also in the observation
time Bao et al. (2017); Zhang and Li (2019); Fang et al.
(2019); Lin et al. (2020).

Figure 2 evidences the symmetry of the hidden chaotic
attractor with initial conditions (1, 1+ j2000, 0.1+ j2000)
and (1, 1 − j2000, 0.1 + j2000), respectively. Figure 3
shows the bifurcation diagram for the parameter a of the
proposed complex chaotic system (2). We observed that a
cascade of reverse double-period bifurcations leads to the
hidden chaotic attractor since b > a. On the other hand,
Figure 4 demonstrates the extreme multistability of the
hidden chaotic attractor in the proposed complex chaotic
system (2). For any change in the complex variable u3, we
have a scaling in the amplitude of the complex variable u5.

4. CONCLUSION

A novel complex-valued Lorenz-type chaotic system has
been introduced. By Theorem 2 and numerical analysis,
we have demonstrated that the system generates a hidden
chaotic attractor and extreme multistability as a function
of the minimal variations in its initial conditions, which
is very rare since the complex system possesses only
stable equilibrium points. Potential applications are in
the chaos-based data encryption field, such as random
number generation, image encryption, and authentication
protocols.
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Fig. 1. (a)-(b) Hidden chaotic attractor for real (u1, u2, u4) and complex variables (u3, u5) with a = 10, b = 10.1, c = 100,
and initial conditions (1, 1+ j2000, 0.1+ j2000). (c) Time series of the complex variable u3 for a minimal change in
initial conditions fos z2 = (u2+ju3) with (1+j2000) and (1.01+j2000), respectively, (d) Extreme multistability of
the hidden chaotic attractor as a function of the complex variable u3 with initial conditions (1, 1+ j2000, 0.1+ j2),
(1, 1 + j1300, 0.1 + j2), and (1, 1 + j800, 0.1 + j2).

Fig. 2. (a) Symmetry of the hidden chaotic attractor with
a = 10, b = 10.1, c = 100, and initial conditions
(1, 1 + j2000, 0.1 + j2000) and (1, 1 − j2000, 0.1 +
j2000), respectively. (b) Localization of the second
hidden chaotic attractor using the complex parameter
c = 100 ± j100 and a = 10 and b = 10.1, with initial
conditions (1, 1 + j2, 0.1 + j2).
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Fig. 3. Bifurcation diagram for the parameter a with
b = 10.1, c = 100, and initial conditions (1, 1 +
j2000, 0.1+j2000) in the complex chaotic system (2).
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