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Abstract: We consider the problem of optimally tracking a given growth rate for investor’s
wealth over a finite-horizon in a market with distributed and discrete delays. This represents an
example of a stochastic linear quadratic control problem with state-delay, and with additive-
multiplicative noise. We derive an explicit closed-form solution to this problem as a state-
feedback control law.
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1. INTRODUCTION AND PROBLEM
FORMULATION

In classical portfolio optimization models, the problem is
typically framed as an optimal stochastic control problem,
where the investor selects an optimal strategy to maximize
the expected utility of wealth. To establish the founda-
tional framework for this class of models, we introduce the
most basic optimal investment problem with expected util-
ity from terminal wealth in continuous-time is as follows.
Consider a market of a bond with price S̄0 and of a stock
with price S̄ that are solutions to following equations: dS̄0(t) = S̄0(t)r̄(t)dt, t ∈ [0, T ]

dS̄(t) = S̄(t)[µ(t)dt+ σ̄′(t)dW̄ (t)], t ∈ [0, T ]
S̄0(0) > 0, S̄(0) > 0, are given.

(1)

Here r̄ is the interest rate, µ is the appreciation rate
of the stock, σ̄ is the volatility vector of the stock, and
W̄ is an n-dimensional standard Brownian motion. The
market coefficients r̄, µ, and σ̄, are random processes and
unbounded in general and must be such that equations (1)
have unique strong solutions. Further, consider an investor
with initial wealth x̄0 > 0 that holds vS̄0

(t) number of
shares in the bond and vS̄(t) number of shares in the stock
at time t. The value of the investor’s portfolio, i. e. the
investor’s wealth, at time t is thus:

x̄(t) := vS̄0
(t)S̄0(t) + vS̄(t)S̄(t), t ∈ [0, T ]. (2)

This portfolio is called self-financing if it has the following
dynamics (see, for example, Korn (1997)):

dx̄(t) = vS̄0
(t)dS̄0(t) + vS̄(t)dS̄(t), t ∈ [0, T ]. (3)

If we substitute the differentials of S̄(t) and S̄0(t) from (1)
into (3), and further knowing that vS̄0

(t)S̄0(t) = x̄(t) −
vS̄(t)S̄(t), which follows from (2), we obtain (for t ∈ [0, T ]):

dx̄(t)=[r̄(t)x̄(t)+(µ(t)−r̄(t))u(t)]dt+u(t)σ̄′(t)dW̄ (t), (4)

where u(t) := vS̄(t)S̄(t), t ∈ [0, T ]. The self-financing
portfolio (4) is thus an example of a linear stochastic
control system with multiplicative noise with the investor’s
wealth x̄ being the state of the system and the amount of
wealth invested in the stock u being the control variable.
The optimal investment problem with the expected utility
from terminal wealth as the criterion, is the following
optimal stochastic control problem:{

max
u(·)∈D

E [U(x̄(T ))] ,

s.t. (4),
(5)

for some suitable admissible set of controls D and utility
function U . Problem (5) represents a typical example in
which past information is irrelevant and decisions are
based only on current information. Extensive research
has been conducted on models with such settings (see,
e.g., Korn (1997), Karatzas and Shreve (1998), for text-
book accounts).
In real-world financial markets the stock price process
is affected by past information. Consequently, investors
frequently rely on past stock performance when making
decisions, leading to memory effects that Markov models
cannot capture. To formulate such a framework, we be-
gin by introducing the following: let (Ω,F ,P) be a com-
plete probability space. We further consider the filtration
(F(t), t ∈ [0, T ]), where F(t) is the augmentation of
σ{B(s): 0 ≤ s ≤ t} by all the P-null sets of F , where
(B(t), t ≥ 0) is defined as an m1-dimensional standard
Brownian motion. Moreover, we assume that r, µ1, µ2,
and µ3 are positive constants, and that σ is a vector with
strictly positive constant components such that σ′σ > 0.
Further, let I(t) be defined as the investment rate on
the stock at time t. More precisely, let L2

F (0, T ;E) be
the set of E valued square-integrable adapted processes
(with E being an Euclidean space). Now, consider a fi-
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nancial market consisting of a bond with amount S0 and
a stock with amount S, which are modeled as solutions
to following stochastic differential system with delay (for
t ∈ [s, T ], s ∈ [0, T ], see Chang et al. (2011) and Pang and
Hussain (2017)):

dS0(t) = [rS0(t)− I(t)]dt,
dS(t) =

{
S(t)[µ1 + µ2Y (t) + µ3Z(t)]

+I(t)
}
dt+ σS(t)dB(t).

(6)

Further, we assume that the differential stochastic equa-
tion of S depends on two delay variables Y and Z which
are defined as follows (for ∀t ∈ [s, T ], s ∈ [0, T ]):

Y (t) :=

∫ 0

−h

eλθx(t+ θ)dθ, Z(t) := x(t− h),

where λ > 0 is a constant and h > 0 is the delay coefficient.
Further, the total wealth x(t) is defined as the sum of
the bond and stock amounts, i.e., x(t) = S0(t) + S(t).
Consequently, the corresponding wealth equation is as
follows: dx(t) = {[µ1 + µ2Y (t) + µ3Z(t)]S(t) + rS0(t)} dt

+σ′S(t)dB(t) , t ∈ [0, T ],
x(t) = ζ(t− h), t ∈ [s− h, s], s ∈ [0, T ].

(7)

where ζ : [−h, 0] → R is a given continuous function.
The optimal investment problem with an expected util-
ity from terminal wealth as a criterion, is the following
stochastic control problem:{

max
S(·)∈C

E[U(x(T )],

s.t.(7),
(8)

for some suitable admissible set of controls C. This problem
has been previously studied in the context of a finite-
horizon and constant market coefficients, as in Chang
et al. (2011) and for the infinite-horizon case (see Pang
and Hussain (2016)). In addition, several researchers have
studied similar stochastic models that incorporate de-
layed information structures: examples of such models in-
clude stochastic portfolio optimization Pang and Hussain
(2017), stochastic investment and consumption optimiza-
tion Chang et al. (2011), and infinite-horizon optimiza-
tion Pang and Hussain (2015). Note that in equation (7)
the control process I(t) does not appear. As x(t) = S0(t)+
S(t), by defining the control process u(t) := S(t), we have
that S0(t) = x(t) − u(t), and the wealth equation (7)
becomes (for t ∈ [s, T ], s ∈ [0, T ]):

dx(t) =

[
rx(t) + µ3x(t− h) + µ2

∫ 0

−h

eλθx(t+ θ)dθ

+(µ1 − r)u

]
dt+ σ′udB,

x(t) = ζ(t− h), t ∈ [s− h, s] .

(9)

In this paper, we take a different approach to the problem
of optimal investment as compared to the above cited
literature. Instead of maximising the expected utility from
terminal wealth as in (8), we consider the problem of
tracking a given growth rate for the wealth, i.e. the in-
vestor chooses a desired growth rate for his wealth, and
then selects a trading strategy that minimises the trac-

ing error. This approach to optimal investment is well-
known in the markets without delay (see, for example, Yao
et al. (2006), Gashi and Date (2012), Algoulity and Gashi
(2023)), however, it has not been applied previously to the
markets with delay as here. More precisely, consider the
following financial benchmark equation that the investor
aims to reach (track):{

dF (t) = bF (t)dt, t ≥ 0,

F (θ̃) = ϕ̄(θ̃) > 0, θ̃ ∈ [−h, 0],
(10)

where b > 0 and b > r. As F (t) = F (0)ebt for t ≥ 0, this
benchmark specifies the desired growth rate for the wealth
through the specification of F (0) and b. We define the
tracking error at time t, denoted by y(t), as the difference
between the wealth x(t) and the value of the benchmark:

y(t) := x(t)− F (t), t ∈ [−h, T ].

The differential of the tracking error is dy(t) = dx(t) −
dF (t). Thus by taking the difference between equations
(9) and (10) we obtain:

dy(t) = dx(t)− dF (t)

=

[
rx+ µ3x (t− h) + µ2

∫ 0

−h

eλθx(t+ θ)dθ

+(µ1 − r)u

]
dt+ uσ′dB − bF (t)dt

=

{
r(x− F + F ) + µ3[x(t− h)− F (t− h) + F (t− h)]

+µ2

∫ 0

−h

eλθ[x(t+ θ)− F (t+ θ) + F (t+ θ)]dθ + (µ1 − r)

×u− bF

}
dt+ uσ′dB

=

{
ry + µ3y(t− h) + µ2

∫ 0

−h

eλθy(t+ θ)dθ + (µ1 − r)u

+(r − b)F + µ3F (t− h) + µ2

∫ 0

−h

eλθF (t+ θ)dθ

}
dt

+uσ′dB. (11)

Let y denote the first state variable, i.e. x1(t) := y(t). The
term

µ2

∫ 0

−h

eλθy(t+ θ)dθ

can be rewritten in the following more convenient form:

µ2

∫ θ

−h

eλθy(t+ θ)dθ= µ2

∫ t

t−h

eλ(τ−t)y(τ)dτ

= µ2e
−λt

∫ t

t−h

eλτy(τ)dτ.

The second state variable x2 is defined as:

x2(t) :=

∫ t

t−h

eλτy(τ)dτ, ∀t ⩾ 0.

The differential of x2 is:

https://doi.org/10.58571/CNCA.AMCA.2025.062

XX Congreso Latinoamericano de Control Automático (CLCA 2025)
13-17 de Octubre, 2025. Cancún, Quintana Roo, México

Copyright© AMCA, ISSN: 2594-2492
362



dx2(t) =
[
eλty(t) + eλ(t−h)y(t− h)

]
dt

=
[
eλtx1(t) + eλ(t−h)x1(t− h)

]
dt.

The equation of y in (11) in terms of x1 and x2 is:

dx1(t) =
[
rx1(t) + µ3x1(t− h) + µ2e

−λtx2(t)

+ (µ1 − r)u+ F̃ (t)
]
dt+ uσ′dB,

where F̃ (t) for t ∈ [0, T ] is defined as:

F̃ (t) :=(r − b)F (t)+µ3F (t− h)+µ2

∫ 0

−h

eλθF (t+ θ)dθ.

Now, we define the state vector X(t) := [x1(t) x2(t)]
′

with its equation being:

d

[
x1(t)
x2(t)

]
=

{[
r µ2e

−λt

eλt 0

] [
x1(t)
x2(t)

]
+

[
µ3 0

eλ(t−h) 0

]

×
[
x1(t− h)
x2(t− h)

]
+

[
µ1 − r

0

]
u+

[
F̃
0

]}
dt+u

[
σ′

0

]
dB.

This can also be written as:

dX(t) = [A(t)X(t) +B(t)X(t− h) + C(t)u(t)

+D(t)]dt+ u(t)C̃(t)dB(t), (12)

where

A(t) :=

[
r µ2e

−λt

eλt 0

]
, B(t) :=

[
µ3 0

eλ(t−h) 0

]
,

C(t) :=

[
µ1 − r

0

]
, D(t) :=

[
F̃ (t)
0

]
, C̃(t) :=

[
σ′(t)
0

]
.

As we aim to minimise the tracking error x1, the opti-
mality criterion is the following finite-horizon quadratic
functional:

J(u(·))=E

{∫ T

0

X ′(t)N1X(t)dt+X ′(T )Q1X(T )

}
,

where

N :=

[
N1 0
0 0

]
, Q :=

[
Q1 0
0 0

]
,

with N1 and Q1 being non-negative scalars. The optimal
growth rate tracking problem to be solved is:{

min
u(·)∈A

J(u(·)),

s.t.(12),
(13)

where the admissible set of controls is defined as A :=
L2
F (0, T ;R), and this in particular ensures the existence of

a unique strong solution to (12) (see for example, Mao
(2007)). Note that (13) is an optimal stochastic con-
trol problem, or more precisely a linear-quadratic (LQ)
stochastic control problem with both discrete and dis-
tributed delays. Although there is a large recent literature
on stochastic LQ control problem with delay under dif-
ferent settings (see, Chen and Zhang (2023), Pang and
Hussain (2015), Pang and Hussain (2017), Zhang et al.
(2021) Huang et al. (2012), Chen and Wu (2010), Liang
et al. (2018)), Alasmi and Gashi (2024b), Alasmi and
Gashi (2024a)), the problem (13) cannot be solved in

a state-feedback form by directly applying such results.
Instead, we have extended the existing approaches that
rely on the completion of squares method to obtain the
solution to problem (13) in an explicit closed-form as
a state-feedback control law. The coefficients of such a
control law are determined by a system of coupled linear
ordinary and partial differential equations. Note that in
what follows we have omitted the argument t whenever
convenient for notational simplicity.

2. SOLUTION TO THE OPTIMAL GROWTH RATE
TRACKING PROBLEM

In order to state the solution to optimal growth rate
tracking problem (13), we introduce two set of linear
ordinary differential equations that are coupled with a
system of partial differential equations for t ∈ [0, T −
h], θ̄ ∈ [t, t+ h], and ξ̄ ∈ [t, t+ h]:

ṗ′1(t) + p′1(t)A(t) + 2D′(t)p2(t) + p3(t, 0)
−2R−1p′1(t)C(t)C ′(t)p2(t) = 0,

R(t) := tr(C̃ ′(t)p2(t)C̃(t)),
p1(T − h) = p̄1(T − h),

(14)


ṗ2(t) +A′(t)p2(t) + p2(t)A(t) + 2p4(t, 0)− 2R−1p2(t)

×C(t)C ′(t)p2(t) +N = 0, R(t) > 0,

p2(T − h) = p̄2(T − h),

(15)



∂p3(t, θ̄ − h− t)

∂t
+ 2D′(t)p4(t, θ̄ − h− t)

−2R−1p′1(t)C(t)C ′(t)p4(t, θ̄ − h− t) = 0,
−e−λhp3(t,−h) + p′1(t)B(t) = 0,
p3(T − h, z − h− t) = p̄3(T − h, z − h− t),
z ∈ [T − h, T ],

(16)



2∂p4(t, θ̄ − h)

∂t
+2A′(t)p4(t, θ̄ − h− t) +p′5(t, θ̄ − h− t, 0)

+p5(t, 0, θ̄ − h− t)− 2R−1p2(t)C(t)C ′(t)
×p4(t, θ̄ − h− t) = 0,
−e−λhp4(t,−h) + p2(t)B(t) = 0,
p4(T − h, z − h− t) = p̄4(T − h, z − h− t),
z ∈ [T − h, T ],

(17)



∂p5(t, θ̄ − h− t, ξ̄ − h− t)

∂t
− 2R−1p′4(t, θ̄ − h− t)

×C(t)C ′(t)p4(t, ξ̄ − h− t) = 0,
−e−λhp′5(t, θ̄ − h− t,−h)− e−λhp5(t,−h, θ̄ − h− t)
+2B(t)p4(t, θ̄ − h− t) = 0,
p5(T − h, z − h− t, z̄ − h− t)
= p̄5(T − h, z − h− t, z̄ − h− t), z ∈ [T − h, T ]
and z̄ ∈ [T − h, T ]

(18)

For t ∈ [T − h, T ], θ̄ ∈ [t, T ], and ξ̄ ∈ [t, T ]: ˙̄p′1(t) + p̄′1(t)A(t) + 2D′(t)p̄2(t)− 2R̃−1p̄′1(t)C(t)C ′(t)
×p̄2(t) = 0,
p̄′1(T ) = 0,

(19)
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
˙̄p2(t) +A′(t)p̄2(t) + p̄2(t)A(t)− 2R̃−1p̄2(t)C(t)C ′(t)
×p̄2(t) +N = 0,

R̃(t) := tr(C̃ ′(t)p̄2(t)C̃(t)),
p2(T ) = Q,

(20)


∂p̄′3(t, θ̄ − h− t)

∂t
+ 2D′(t)p̄4(t, θ̄ − h− t)− 2R̃−1p̄′1(t)

×C(t)C ′(t)p̄4(t, θ̄ − h− t) = 0,
−e−λhp̄3(t,−h) + p̄′1(t)B(t) = 0,

(21)


2∂p̄′4(t, θ̄ − h− t)

∂t
+2A(t)p̄4(t, θ̄ − h− t)− 2R̃−1p̄2(t)C(t)

×C ′(t)p̄′4(t, θ̄ − h− t) = 0,
−e−λhp̄4(t,−h) + p̄2(t)B(t) = 0,

(22)


∂p̄5(t, θ̄ − h− t, ξ̄ − h− t)

∂t
− 2R̃−1p̄′4(t, θ̄ − h− t)C(t)

×C ′(t)p̄4(t, ξ̄ − h− t) = 0,
−e−λhp̄′5(t, θ̄ − h− t,−h)− e−λhp̄5(t,−h, θ̄ − h− t)
+2B′(t)p̄′4(t, θ̄ − h− t) = 0,

(23)

Assumption 1. The system of coupled equations (14)-
(23) has a unique solution.
Theorem 1. There exist a unique solution u∗ to the
optimal growth rate tracking problem (13). If T − h ≤ 0,
then the solution is given by:

u∗ :=−2R−1

[
0.5C ′(t)p1(t) + C ′(t)p2(t)X(t) + C ′(t) (24)

×
∫ T

t

eλ(θ̄−h−t)p4(t, θ̄ − h− t)X(θ̄ − h)dθ̄

]
, t ∈ [0, T ],

If T − h > 0, then the solution is given by:

u∗ := −2R−1M

= −2R−1

[
0.5C ′(t)p1(t) + C ′(t)p2(t)X(t) + C ′(t)

×
∫ t+h

t

eλ(θ̄−h−t)p4(t, θ̄ − h− t)X(θ̄ − h)dθ̄

]
, t ∈ [0, T − h],

where M := 0.5C ′(t)p1(t) + C ′(t)p2(t)X(t) + C ′(t)

×
∫ t+h

t

eλ(θ−h−t)p4(t, θ̄ − h− t)X(θ̄ − h)dθ̄, t ∈ [0, T ].

u∗ := −2R̃−1M̄

= −2R̃−1

[
0.5C ′(t)p̄1(t) + C ′(t)p̄2(t)X(t) + C ′(t)

×
∫ T

t

eλ(θ̄−h−t)p̄4(t, θ̄ − h− t)X(θ̄ − h)dθ̄

]
, t ∈ [T − h, T ],

where M̄ := 0.5C ′(t)p̄1(t) + C ′(t)p̄2(t)X(t) + C ′(t)

×
∫ T

t

eλ(θ̄−h−t)p̄4(t, θ̄ − h− t)X(θ̄ − h)dθ̄, t ∈ [T − h, T ].

Proof. We only consider the case of T−h > 0, as the case
of T −h ≤ 0 is very similar and simpler. For t ∈ [0, T −h],
we define the process v1 as:

v1 := p′1(t)X(t) +X ′(t)p2(t)X(t) +

∫ t+h

t

eλ(θ̄−h−t)

×p′3(t, θ̄ − h− t)X(θ̄ − h)dθ̄ + 2X ′(t)

∫ t+h

t

eλ(θ̄−h−t)

×p4(t, θ̄ − h− t)X(θ̄ − h)dθ̄ +

∫ t+h

t

∫ t+h

t

X ′(θ̄ − h)

×eλ(θ̄−h−t)eλ(ξ̄−h−t)p5(t, θ̄ − h− t, ξ̄ − h− t)X(ξ̄ − h)dθ̄dξ̄.

By applying Itô’s formula, the differential of v1 is:

dv1 = ṗ′1(t)X(t)dt+ p′1(t)[A(t)X(t) +B(t)

×X(t− h) + C(t)u(t) +D(t)]dt+ p′1(t)u(t)C̃(t)dB(t)

+[A(t)X(t) +B(t)X(t− h) + C(t)u(t) +D(t)]′p2(t)

×X(t)dt+ [u(t)C̃(t)dB(t)]′p2(t)X(t) +X ′(t)ṗ2(t)X(t)dt

+X ′(t)p2(t)[A(t)X(t) +B(t)X(t− h) + C(t)u(t)

+D(t)]dt+X ′(t)p2(t)u(t)C̃(t)dB(t) + 0.5u2(t)

×tr(C̃ ′(t)p2(t)C̃(t))dt+

∫ t+h

t

eλ(θ̄−h−t) ∂p
′
3(t, θ̄ − h− t)

∂t

×X(θ̄ − h)dθ̄ + p′3(t, 0)X(t)dt− e−λhp′3(t,−h)X(t− h)dt

+2X ′(t)

∫ t+h

t

eλ(θ̄−h−t) ∂p4(t, θ̄ − h− t)

∂t
X(θ̄ − h)dθ̄

+2 [A(t)X(t) +B(t)X(t− h) + C(t)u(t) +D(t)]
′

×
∫ t+h

t

eλ(θ̄−h−t)p4(t, θ̄ − h− t)X(θ̄ − h)dθ̄dt+ 2[u(t)

×C̃(t)dB(t)]′
∫ t+h

t

eλ(θ̄−h−t)p4(t, θ̄ − h− t)X(θ̄ − h)dθ̄

+2X ′(t)p4(t, 0)X(t)dt− 2e−λhX ′(t)p4 (t,−h)X(t− h)dt

+

∫ t+h

t

∫ t+h

t

X ′(θ̄ − h)eλ(θ̄−h−t)eλ(ξ̄−h−t)

×∂p5(t, θ̄ − h− t, ξ̄ − h− t)

∂t
X(ξ̄ − h)dθ̄dξ̄

+X ′(t)

∫ t+h

t

eλ(θ̄−h−t)p5(t, 0, θ̄ − h− t)

×X(θ̄ − h)dθ̄dt−X ′(t− h)e−λh

∫ t+h

t

eλ(θ̄−h−t)

×p5(t,−h, θ̄ − h− t)X(θ̄ − h)dθ̄dt+

∫ t+h

t

X ′(θ̄ − h)

×eλ(θ̄−h−t)p5(t, θ̄ − h− t, 0)X(t)dθ̄dt

−e−λh

∫ t+h

t

X ′(θ̄ − h)eλ(θ̄−h−t)p5(t, θ̄ − h− t,−h)

×X(t− h)dθ̄dt (25)

Now, we define G(u) as the collection of all terms in (25)
that depend explicitly on the control u. In other words,
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G(u) := u2(t)
[
0.5tr(C̃ ′(t)p2(t)C̃(t))

]
+ 2u(t)

[
0.5C ′(t)p1(t)

+C ′(t)p2(t)X(t) + C ′(t)

∫ t+h

t

eλ(θ̄−h−t)p4(t, θ̄ − h− t)

×X(θ̄ − h)dθ̄

]
= 0.5u2(t)R(t) + 2u(t)M (26)

By the completion of square, we rewrite G(u) in (26) as:

G(u) = 0.5R(t)
[
u2(t) + 4u(t)R−1M + (2R−1)2M ′M

−
(
2R−1

)2
M ′M

]
= 0.5R(t)

[
u+ 2R−1M

]′ [
u+ 2R−1M

]
− 2R−1M ′M

= 0.5R(t)
[
u+ 2R−1M

]′ [
u+ 2R−1M

]
− 2R−1

×

[
0.5C ′(t)p1(t) + C ′(t)p2(t)X(t) + C ′(t)

×
∫ t+h

t

eλ(θ̄−h−t)p4(t, θ̄ − h− t)X(θ̄ − h)dθ̄

]′
×
[
0.5C ′(t)p1(t) + C ′(t)p2(t)X(t) + C ′(t)

∫ t+h

t

eλ(θ̄−h−t)

×p4(t, θ̄ − h− t)X(θ̄ − h)dθ

]
By integrating both sides of the equation (25) from 0 to
T − h, then taking the expectation, we obtain:

E[J1(u(·)) + v1(T − h)] = v1(0)

+E

{∫ T−h

0

{
p′1(t)D(t)− 0.5R−1p′1(t)C(t)C ′(t)p1(t)

+X ′(t)[ṗ2(t) +A′(t)p2(t) + p2(t)A(t) + 2p4(t, 0)− 2R−1

×p2(t)C(t)C ′(t)p2(t) +N ]X(t) + [ṗ′1(t) + p′1(t)A(t)

+2D′(t)p2(t) + p′3(t, 0)− 2R−1(t)p′1(t)C(t)C ′(t)p2(t)]X(t)

+

∫ t+h

t

e−λ(θ̄−h−t)

[
∂p3(t, θ̄ − h− t)

∂t
+ 2D′(t)

×p4(t, θ̄ − h− t)− 2R−1p′1(t)C(t)C ′(t)p4(t, θ̄ − h− t)

]
×X(θ̄ − h)dθ̄ +X ′(t)

∫ t+h

t

eλ(θ̄−h−t)

[
2∂p4(t, θ̄ − h− t)

∂t

−2R−1p2(t)C(t)C ′(t)p4(t, θ̄ − h− t) + 2A′(t)p4(t, θ̄ − h− t)

+p′5(t, θ̄ − h− t, 0) + p5(t, 0, θ̄ − h− t)

]
X(θ̄ − h)dθ̄

+

∫ t+h

t

∫ t+h

t

X ′(θ̄ − h)eλ(θ̄−h−t)eλ(ξ̄−h−t)

×
[
∂p5(t, θ̄ − h− t, ξ̄ − h− t)

∂t
− 2R−1p′4(t, θ̄ − h− t)C(t)

×C ′(t)p4(t, ξ̄ − h− t)

]
X(ξ̄ − h)dθ̄dξ̄

+0.5R
[
u+ 2R−1M

]′ [
u+ 2R−1M

]}
dt

}

= J1(u
∗(·)) + E

∫ T−h

0

0.5R
[
u+2R−1M

]′ [
u+2R−1M

]
dt, (27)

where

J1(u
∗(·)) := p′1(0)X(0) +X ′(0)p2(0)X(0) +

∫ h

0

eλ(θ̄−h)

×p′3(0, θ̄ − h)X(θ̄ − h)dθ̄ + 2X ′(0)

∫ h

0

eλ(θ̄−h)p4(0, θ̄ − h)

×X(θ̄ − h)dθ̄ +

∫ h

0

∫ h

0

X ′(θ̄ − h)eλ(θ̄−2h+ξ̄)

×p5(0, θ̄ − h, ξ̄ − h)X(ξ̄ − h)dθ̄dξ̄ +

∫ T−h

0

[p′1(t)D(t)

−0.5R−1p′1(t)C(t)C ′(t)p1(t)]d.

For t ∈ [T − h, T ], we define the process v2 as:

v2 := p̄′1(t)X(t) +X ′(t)p̄2(t)X(t) +

∫ T

t

eλ(θ̄−h−t)

×p̄′3(t, θ̄ − h− t)X(θ̄ − h)dθ̄ + 2X ′(t)

∫ T

t

eλ(θ̄−h−t)

×p̄4(t, θ̄ − h− t)X(θ̄ − h)dθ̄ +

∫ T

t

∫ T

t

X ′(θ̄ − h)

×eλ(θ̄−h−t)eλ(ξ̄−h−t)p̄5(t, θ̄ − h− t, ξ̄ − h− t)

×X(ξ̄ − h)dθ̄dξ̄.

By proceeding in a similar way with v2 as we did for the
case of v1, i.e. by applying Itô’s formula to v2, completing
the square for the terms that depend explicitly on u,
integrating both sides, and then taking the conditional
expectation, we obtain:

J2(u(·)) := v2(T − h) + E

{∫ T

T−h

{
− 0.5R̃−1p̄′1(t)C(t)

×C ′(t)p̄1(t) + p̄′1(t)D(t) + [ ˙̄p′1(t) + p̄′1(t)A(t) + 2D′(t)

×p̄2(t)− 2R̃−1p̄′1(t)C(t)C ′(t)p̄2(t)]X(t) + [p̄′1(t)B(t)

−e−λhp̄′3(t,−h)
]
X(t− h) +X ′(t)[ ˙̄p2(t) +A′(t)p̄2(t)

+p̄2(t)A(t)− 2R̃−1p̄2(t)C(t)C ′(t)p̄2(t) +N
]
X(t)

+X ′(t)
[
2p̄2(t)B(t)− 2e−λhp̄4(t,−h)

]
X(t− h) +X ′(t)

×
∫ T

t

eλ(θ̄−h−t)
[
−4R̃−1p̄2(t)C(t)C ′(t)p̄4(t, θ̄ − h− t)

+2A′(t)p̄4(t, θ̄ − h− t) +
2∂p̄4(t, θ̄ − h− t)

∂t

]
X(θ̄ − h)dθ̄

+

∫ T

t

eλ(θ̄−h−t)
[
−2R̃−1p̄′1(t)C(t)C ′(t)p̄4(t, θ̄ − h− t)

+2D′(t)p̄4(t, θ̄ − h− t) +
∂p̄′3(t, θ̄ − h− t)

∂t

]
×X(θ̄ − h)dθ̄ +X ′(t− h)

∫ T

t

eλ(θ̄−h−t)

[
e−λh
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×p̄5(t,−h, θ̄ − h− t) + 2B′(t)p̄4(t, θ̄ − h− t)− e−λh

×p̄′5(t, θ̄ − h− t,−h)

]
X(θ̄ − h)dθ̄ +

∫ T

t

∫ T

t

eλ(θ̄−h−t)

×eλ(ξ̄−h−t)x′(θ̄ − h)

[
∂p̄5(t, θ̄ − h− t, ξ̄ − h− t)

∂t
− 2R̃−1

×p̄′4(t, θ̄ − h− t)C(t)C ′(t)p̄4(t, ξ̄ − h− t)

]
X(ξ̄ − h)dθ̄dξ̄

+0.5R
[
u+ 2R̃−1M̄

]′ [
u+ 2R̃−1M̄

]}
dt
∣∣∣F(T − h)

}

= v2(T − h) + E

{∫ T

T−h

{
− 0.5R̃−1p̄′1(t)C(t)C ′(t)p̄1(t)

+p̄′1(t)D(t) + 0.5R̃
[
u+ 2R̃−1M̄

]′
×
[
u+ 2R̃−1M̄

]}
dt
∣∣∣F(T − h)

}

= v2(T − h) + J2(u
∗(·)) + E

{∫ T

T−h

0.5R̃

×
[
u+ 2R̃−1M̄

]′ [
u+ 2R̃−1M̄

]}
dt
∣∣∣F(T − h)

}
(28)

where J2(u
∗(·)) := E

{∫ T

T−h

{
− 0.5R̃−1p̄′1(t)C(t)C ′(t)

×p̄1(t) + p̄′1(t)D(t)

}
dt
∣∣∣F(T − h)

}
.

Note that v1(T −h) = v2(T −h). Now, from (27) and (28)
it follows that for any u(·) ∈ A we have:

J(u(·)) = J1(u
∗(·)) + E

{∫ T−h

0

0.5R
[
u+ 2R−1M

]′
×
[
u+ 2R−1M

]
dt

}
+ J2(u

∗(·)) + E
{
E
{∫ T

T−h

0.5R̃

×
[
u+ 2R̃−1M̄

]′ [
u+ 2R̃−1M̄

]
dt

∣∣∣∣F(T − h)

}}
≥ J1(u

∗(·)) + J2(u
∗(·)),

This lower bound is achieved if and only if u(t) = u∗(t)
for a.e. t ∈ [0, T ] a.s.. 2

3. CONCLUSIONS

We have considered the problem of optimal growth rate
tracking problem in an incomplete market with delays. By
deriving a certain completion of squares method, along
with a system of coupled ordinary and partial differential
equations, we successfully obtained a unique and explicit
closed-form solution to such an optimal stochastic control
problem. A set of challenging extensions that may be ex-
plored in future studies is the optimal benchmark tracking
problem in more general market models and benchmarks,
such as those that include random and unbounded coef-
ficients with delays, the inclusion of consumption, or the
incorporation of borrowing constraints with delays.
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