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Resumen This work proposes a straightforward methodology to address the problem of
parametric identification of an inverted pendulum system using the Differential Evolution
metaheuristic optimization algorithm. Five variants of the algorithm are evaluated to determine
which one performs best for this specific application, the main difference between the variants
is the mutation stage. To validate the results, 30 simulations were carried out for each variant
using both noise-free and noise-contaminated signals. This approach enables the use of robust
statistical metrics to support the reliability of the results. The experiments show that the
rand/2/bin variant yields the best performance in terms of accuracy and consistency under
both noisy and noise-free conditions. This conclusion is based on analyzing the average error
values and the variability observed across the simulations.

Keywords: Parametric identification, Differential Evolution, Inverted pendulum

1. INTRODUCCIÓN

La identificación paramétrica es el proceso que permite
estimar los valores numéricos de un modelo matemático
que describe un sistema, donde el objetivo es ajustar el
modelo para que represente lo más aproximado posible
el comportamiento observado del sistema real. Resolver
este problema ha generado diversas metodoloǵıas y ma-
neras de subclasificar el problema principal Corriou and
Courriou (2004). Entre las metodoloǵıas empleadas se han
utilizado técnicas de optimización continua y discreta Ju-
manov et al. (2024), además, se han identificado sistemas
dinámicos lineales y no lineales Semenov et al. (2019), Dy-
vak et al. (2022). Otros han experimentado con técnicas
de optimización metaheuŕısticas basadas en inteligencia
colectiva como PSO (Particle Swarm Optimization) Ha-
fez and Dhaouadi (2023), o metaheuŕısticas basadas en
estrategias evolutivas Qian et al. (2025). La Figura (1)
ilustra el esquema general del proceso de identificación
paramétrica aplicable a cualquier sistema dinámico, y
en este caso particular, al péndulo invertido. La primera
etapa del proceso consiste en la generación de datos,
la cual implica aplicar una señal de entrada que excite la
planta, ya sea experimental o simulada. Esta es la única
etapa en la que se requiere interacción con la planta en
caso en que los datos se obtengan experimentalmente,

⋆ El primer autor agradece a SECIHTI-México por su apoyo a
través de la beca doctoral 1008777.

Figura 1. Proceso de identificación paramétrica emplean-
do metaheuŕısticas basadas en poblaciones

mientras que el resto del proceso se realiza mediante
simulaciones numéricas. Tras la excitación, se registran las
respuestas del sistema, especialmente aquellos estados que
son medibles directamente, los cuales suelen corresponder
a las posiciones del sistema dinámico. Una vez registradas
las señales de respuesta de interés del sistema dinámico,
se da inicio al proceso de optimización. Esta etapa
comienza con la formulación de un modelo matemático
que represente el comportamiento de la planta. A partir
de este modelo se plantea el problema de optimización
definiéndose las variables de diseño correspondientes a los
parámetros a identificar, la función de costo, que evalúa
la calidad del ajuste comparando los datos simulados y
experimentales, y las restricciones que aseguran que las
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Figura 2. Péndulo invertido.

soluciones obtenidas sean f́ısicamente viables y coherentes
con la dinámica del sistema. Además, es necesario selec-
cionar un algoritmo de optimización adecuado para resol-
ver el problema planteado. El resultado de este proceso
es la estimación de los parámetros que mejor describen
el comportamiento de la planta. Este trabajo propone
el empleo del algoritmo de Evolución Diferencial (ED)
para identificar los parámetros del péndulo invertido. La
identificación paramétrica se plantea como un proceso de
optimización.

2. MODELO MATEMÁTICO DEL PÉNDULO
INVERTIDO

La Figura (2) muestra el diagrama del péndulo invertido,
el cual está compuesto por un carro de masa M que
se desplaza horizontalmente una distancia x. Sobre este
carro se encuentra acoplado un péndulo de masa m,
longitud l e inercia I, el cual oscila de forma angular
con respecto a la vertical descrita por el ángulo θ. A este
sistema se le aplica una fuerza Fe la cual actúa como señal
de excitación para efectuar la identificación paramétrica.
El modelo dinámico que describe el comportamiento del
péndulo invertido se muestra en (1) Bay (1999), el cual
se puede obtener a partir de las ecuaciones de Euler-
Lagrange Fantoni and Lozano (2012).

(m+M) ẍ+mlθ̈ cos(θ)−mlθ̇2 sin(θ) = Fe(
I +ml2

)
θ̈ +mlẍ cos(θ)−mgl sin(θ) = 0

(1)

Las ecuaciones del péndulo invertido (1) se pueden escri-
bir de manera matricial como se muestra en (2).[

m+M ml cos(θ)
ml cos(θ) I +ml2

] [
ẍ

θ̈

]
+

[
−mlθ̇2 sin(θ)
−mgl sin(θ)

]
=

[
Fe

0

]
(2)

A partir de la forma matricial del sistema mostrada en
la ecuación (2) se identifican los grupos de parámetros
relevantes para simplificar el proceso de identificación
paramétrica. En consecuencia, los parámetros a estimar
se presentan en la ecuación (3).

P1 = m+M

P2 = I +ml2

P3 = ml

P4 = mgl

(3)

Por lo tanto, el sistema dinámico que modela el com-
portamiento del péndulo invertido, una vez definidos los
parámetros a identificar, se expresa en la forma mostrada
en la ecuación (4).

[
P1 P3 cos(θ)

P3 cos(θ) P2

] [
ẍ

θ̈

]
+

[
−P3θ̇

2 sin(θ)
−P4 sin(θ)

]
=

[
F
0

]
(4)

Para resolver las ecuaciones diferenciales que describen
el comportamiento del péndulo invertido, se lleva a cabo
una redefinición de los estados, tal como se muestra en la
ecuación (5). [

x ẋ θ θ̇
]T

= [x1 x2 x3 x4]
T

(5)

Finalmente, las ecuaciones dinámicas se transforman a
una representación en espacio de estados con el objetivo
de facilitar e implementar la simulación del modelo del
péndulo invertido, como se muestra en la ecuación (6).ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

−P2P3 sin(x3)x
2
4+FP2−P3P4 cos(x3) sin(x3)

P3
2cos(x3)

2−P1P2

x4
cos(x3) sin(x3)P3

2x2
4+F cos(x3)P3−P1P4 sin(x3)

P3
2cos(x3)

2−P1P2


(6)

Para resolver la ecuación (6) se emplea el método de
integración de Runge-Kutta de cuarto orden Jaan (2009),
mostrado en la ecuación (7), donde: h es el paso de inte-
gración y fa(t, y) es la función a integrar. Este método se
utiliza para obtener una mayor precisión en los resultados
durante la simulación del sistema. Las condiciones inicia-
les empleadas en las simulaciones numéricas en el proceso
de identificación deben ser las mismas que se utilizaron
para excitar la planta simulada o experimental.

K1 = hfa(t, y)

K2 = hfa

(
t+

h

2
, y +

K1

2

)
K3 = hfa

(
t+

h

2
, y +

K2

2

)
K4 = hfa (t+ h, y +K3)

y(t+ h) = y(t) +
1

6
(K1 + 2K2 + 2K3 +K4)

(7)

3. ALGORITMO DE EVOLUCIÓN DIFERENCIAL

La optimización es un proceso iterativo que busca encon-
trar el máximo o el mı́nimo de una función f(x), partiendo
de una función de costo conocida, la cual ponderará el
rendimiento de la optimización siempre y cuando las res-
tricciones sean satisfechas Belegundu and Chandrupatla
(2019). Formalmente, un problema de optimización no
lineal se define de la siguiente manera:

min/max f(X)

sujeto a gi(X) ≤ 0, i = 1, . . . ,m

hk(X) = 0, k = 1, . . . , l

xL
j ≤ xj ≤ xU

j , j = 1, . . . , D

(8)

donde X = (x1, x2, . . . , xD)
⊤ ∈ RD representa el con-

junto de posibles soluciones, f(·) representa la función
de costo a optimizar, gi(X) y hk(X) son restricciones de
desigualdad e igualdad, correspondientemente, xL

j y xU
j

son los ĺımites inferior y superior de las variables de diseño
xj , donde j = 1, . . . , D. El algoritmo de ED propuesto
por Kenneth Price y Rainer Storn Storn and Price (1997)
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es un método estocástico ampliamente reconocido por
su eficacia y rápida convergencia. Su funcionamiento se
inspira en la teoŕıa de la evolución de Darwin, donde los
individuos más aptos son los que tienen mayores probabi-
lidades de sobrevivir y reproducirse. El algoritmo de ED
se compone de cuatro etapas fundamentales: inicializa-
ción de la población de búsqueda, generación de nuevas
soluciones mediante mutación, combinación de individuos
a través de recombinación y elección de los más aptos
mediante un proceso de selección Price et al. (2006). La
inicialización es la etapa en la que se generan aleatoria-
mente los individuos de la población inicial, siguiendo la
siguiente expresión matemática:

xi,j,0 = xL
j + randj(0, 1) ·

(
xU
j − xL

j

)
, (9)

donde xi,j,0 representa el valor del j-ésimo parámetro del
i-ésimo individuo, xU

j y xL
j son los ĺımites inferior y supe-

rior de las variables de diseño, randj (0, 1) es un número
aleatorio en el intervalo [0, 1]. La mutación es la etapa en
la que cada individuo se combina con otros miembros de
la población para generar variaciones, promoviendo aśı la
diversidad en la búsqueda de soluciones. Esta operación
se realiza comúnmente mediante la estrategia DE/rand/1,
expresada como:

Vi,g = Xi1,g + F (Xi2,g −Xi3,g) , (10)

donde Vi,g es el vector mutante asociado al i-ésimo indivi-
duo, Xi1,g, Xi2,g, Xi3,g son individuos seleccionados alea-
toriamente de la población, F ∈ (0, 1) es un parámetro
de escala que controla la amplitud de la diferencia entre
los vectores. La recombinación es el proceso mediante
el cual se combina el vector mutante Vi,g con el vector
original xi,j,g para generar un nuevo vector candidato
Ui,j,g también llamado vector de prueba. Esta operación
introduce variaciones adicionales y se define de la siguien-
te forma:

Ui,j,g =

{
νi,j,g, si (randj(0, 1) ≤ Cr)

xi,j,g, en otro caso
(11)

donde νi,j,g es el j-ésimo componente del vector de
prueba, Cr ∈ [0, 1] es el factor de cruza que determina
la probabilidad de tomar el valor del vector mutante. La
selección es la etapa final del ciclo evolutivo, en la cual se
decide si el vector de prueba Ui,j reemplaza al individuo
original xi,j en la siguiente generación. Esta decisión se
basa en la evaluación de la función objetivo, eligiendo
siempre la solución con mejor desempeño. El criterio de
selección se expresa como:

Xi,g+1 =

{
Ui,g, si f (Ui,g) ≤ f (Xi,g)

Xi,g, si f (Ui,g) > f (Xi,g)
(12)

3.1 Variantes del algoritmo de Evolución Diferencial

Las variantes del algoritmo de ED se basan principalmen-
te en la modificación de dos etapas del algoritmo: muta-
ción y recombinación. La notación genérica Das and Su-
ganthan (2011) para representar las variantes es ED//#/,
donde ED representa el algoritmo utilizado (comúnmente
omitido), especifica cómo el vector objetivo es seleccio-
nado, # indica la cantidad de ı́ndices involucrados en la
operación, y representa el tipo de recombinación. Este

trabajo utiliza cinco variantes modificando únicamente la
etapa de mutación del algoritmo sin involucrar la recom-
binación. Las variantes a utilizar son: rand / 1 / bin (13a),
rand / 2 / bin (13b), best / 1 / bin (13c), best / 2 / bin
(13d), current-to-best / 1 / bin (13e):

V1 : Vi,g = xi1,g + F (xi2,g − xi3,g) (13a)

V2 : Vi,g = xi1,g + F (xi2,g − xi3,g) + F (xi4,g − xi5,g)
(13b)

V3 : Vi,g = xibest,g + F (xi2,g − xi3,g) (13c)

V4 : Vi,g = xibest,g + F (xi1,g − xi2,g) + F (xi3,g − xi4,g)
(13d)

V5 : Vi,g = xi,g + F (xibest,g − xi,g) + F (xi1,g − xi2,g)
(13e)

4. APLICACIÓN DEL ALGORITMO DE ED A LA
IDENTIFICACIÓN PARAMÉTRICA DEL PÉNDULO

INVERTIDO

Para abordar el problema de identificación paramétrica
del péndulo invertido, el primer paso consiste en formular
el correspondiente problema de optimización no lineal
(8). Para ello, es fundamental definir adecuadamente las
variables de diseño, la función de costo y las posibles
restricciones que rigen el sistema, con el fin de plantear
una solución efectiva al problema.

4.1 Variables de diseño

Las variables del diseño en este problema corresponden
a los parámetros definidos en la parametrización dada
por la ecuación (3). En este contexto, los parámetros a
identificar corresponden a P1, P2, P3 y P4, los cuales
representan las incógnitas del modelo dinámico a estimar,
representadas por (14).

X = [P1, P2, P3, P4] = [x1, x2, x3, x4] (14)

4.2 Función de costo

La función de costo f(x) utilizada en este problema co-
rresponde al error cuadrático medio (RMSE, por sus
siglas en inglés) calculado a partir del desplazamiento
lineal x y del desplazamiento angular θ. Esta métrica per-
mite cuantificar la diferencia entre las señales simuladas
por el modelo y las mediciones experimentales, evaluando
aśı la calidad del ajuste paramétrico.

f(X) =ω1

√√√√ 1

N

N∑
i=1

(xexp − xsim)
2
+

ω2

√√√√ 1

N

N∑
i=1

(θexp − θsim)
2

(15)

Donde N es la cantidad de datos, xexp y θexp son los
datos experimentales, xsim y θsim son los datos simulados
generados a través del algoritmo de optimización. ω1 y
ω2 son los pesos asignados a cada función de costo, para
que el problema multiobjetivo de optimización sea tratado
como un problema monoobjetivo con ω1 = 0.5 y ω2 = 0.5.
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Tabla 1. Parámetros de control: algoritmo ED

Parámetro Variable PO

Tamaño de la población Np 80
Variables de diseño D 4
Probabilidad de cruza Cr 0.9
Factor de escala F rand(0, 1)
Generaciones gmax 500

4.3 Restricciones

Las restricciones en este problema están determinadas
por la dinámica del sistema, la cual impone relaciones
espećıficas entre los parámetros definidos en el modelo
del péndulo invertido. Estas restricciones aseguran que
las soluciones propuestas mantengan coherencia f́ısica y
cumplan con las ecuaciones que gobiernan el comporta-
miento del sistema:
h1(X) = ẋ(t)− fa (x(t), t) , ver ec. (6) 0.001 ≤ x1 ≤ 3
g1(X) = P1 − P2 > 0 0.001 ≤ x2 ≤ 1
g2(X) = P3 − 1.2P2 > 0 0.001 ≤ x3 ≤ 1
g3(X) = P4 − P3 > 0 0.001 ≤ x4 ≤ 5
g4(X) = P4 − 9P3 > 0

(16)

4.4 Parámetros del algoritmo de ED

Los parámetros de control del algoritmo de ED para
resolver el problema de optimización Po están definidos
en la tabla (1), los cuales corresponden al tamaño de la
población, cantidad de variables de diseño, probabilidad
de cruza, factor de escala y la cantidad de generaciones
empleadas en cada simulación.

4.5 Problema de optimización

El problema de optimización para la identificación pa-
ramétrica del péndulo invertido queda formulado como se
indica en la ecuación (17).

Encontrar:

min
X

[f(X)]

X = [P1 P2 P3 P4] = [x1 x2 x3 x4]

Sujeto a:

h1(X) = ẋ(t)− fa (x(t), t) , ver ec. (6) 0.001 ≤ x1 ≤ 3
g1(X) = P1 − P2 > 0 0.001 ≤ x2 ≤ 1
g2(X) = P3 − 1.2P2 > 0 0.001 ≤ x3 ≤ 1
g3(X) = P4 − P3 > 0 0.001 ≤ x4 ≤ 5
g4(X) = P4 − 9P3 > 0

(17)

4.6 Caso particular del problema de optimización

En los problemas de identificación paramétrica, una estra-
tegia común consiste en estimar conjuntos de parámetros
en lugar de variables individuales. Esta aproximación
facilita la búsqueda de soluciones, ya que evita conflic-
tos derivados de las relaciones dinámicas entre variables
independientes. Por ejemplo, en productos de parámetros,

existen múltiples combinaciones posibles que producen el
mismo resultado, lo que puede introducir ambigüedad y
variabilidad en el proceso de identificación. Sin embargo,
en casos particulares como el del péndulo invertido es
posible plantear un problema de optimización que per-
mita estimar de forma individual los parámetros, sin que
esto implique una alta variabilidad en los datos obtenidos.
Siguiendo el mismo enfoque y desarrollo del caso anterior,
se plantea un nuevo problema de optimización orientado
a la identificación individual de los parámetros, como se
muestra en la ecuación (18):

Encontrar:

min
X

[f(X)]

X = [m M I l] = [x1 x2 x3 x4]

Sujeto a:

h1(X) = ẋ(t)− fa (x(t), t) , ver ec. (2) 0.001 ≤ x1 ≤ 2
g1(X) = M − 2m > 0 0.001 ≤ x2 ≤ 2

g2(X) =
2

5
ml2 − I > 0 0.001 ≤ x3 ≤ 1

g3(X) = m− l > 0 0.5 ≤ x4 ≤ 2
(18)

4.7 Observación sobre el problema de identificación
paramétrica del péndulo invertido

En el problema de identificación paramétrica del péndulo
invertido empleando (3), no es posible reconstruir los
parámetros f́ısicos tales como longitudes, masas e inercias.
No obstante, conociendo a priori la longitud del péndulo
es posible reconstruir el resto de los parámetros f́ısicos a
partir de los parámetros (3). Además, en el problema de
identificación basado en los parámetros f́ısicos del péndulo
invertido, disponer de un valor aproximado de la longitud
del péndulo y restringiendo el conjunto de posibles so-
luciones para este parámetro permite obtener resultados
más precisos y estables del resto de los parámetros.

5. RESULTADOS EXPERIMENTALES

Se realizaron 30 simulaciones por cada variante del algo-
ritmo de ED, tanto en escenarios sin ruido como consi-
derando ruido en las mediciones. El objetivo fue gene-
rar una población de prueba que permitiera comparar
el desempeño de las distintas variantes del algoritmo y,
al mismo tiempo, validar la confiabilidad de los datos
obtenidos mediante el uso del algoritmo ED. Los datos
f́ısicos son: m = 0.75[kg], M = 1.85[kg], l = 0.62[m]
e I = 0.0961[kgm2], y los parámetros a identificar son:
P1 = 2.6[kg], P2 = 0.3844

[
kgm2

]
, P3 = 0.465[kgm],

y P4 = 4.5616
[
kgm/s2

]
. La señal de excitación F co-

rresponde a un pulso, lo que genera como respuesta un
movimiento angular θ y un desplazamiento lineal x los
cuales se visualizan en la Figura (3). En lo que corres-
ponde al método numérico Runge-Kutta se utilizó un
paso de integración de h = 0.01. Para simular el ruido
de medición se utilizó ruido Gaussiano generado por la
función awgn(X,snr) de Matlab con snr=20. Para la
visualización de los datos obtenidos se utilizó el diagrama
de caja, el cual es una representación gráfica que resume
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Figura 3. Señales de entrada u y salida (x, θ)

Figura 4. Diagrama de caja del parámetro 1 sin ruido

la distribución de un conjunto de datos numéricos a través
de cinco estad́ısticas clave: mı́nimo, primer cuartil (Q1),
mediana (Q2), tercer cuartil (Q3) y máximo. Cualquier
valor fuera de este rango se considera un dato at́ıpico y
se marca individualmente Navidi (2006). La Figura (4)
presenta los datos obtenidos para las distintas variantes
del algoritmo en relación con el parámetro P1. Se observa
que, salvo en el caso de la variante V3, la variabilidad de
los datos es baja, lo cual refleja una alta consistencia en
los valores estimados para dicho parámetro. Las Figuras
(4), (5), (6), (7) muestran los datos obtenidos para los
parámetros P1, P2, P3 y P4. Cada figura muestra el
diagrama de caja comparando las variantes V1, V2, V3,
V4 y V5 del algoritmo de ED. Se puede observar que la
variante V3 es la que muestra mayor dispersión de datos.
Los parámetros P1 y P4 muestran la mayor consistencia en
datos, mientras que los parámetros P2 y P3 muestran una
mayor variabilidad, además de algunos puntos at́ıpicos,
principalmente en las variantes V1 y V4. No obstante,
dada la escala que se maneja, dicha variabilidad es muy
pequeña. La tabla (2) muestra los valores promedios obte-
nidos de las 30 simulaciones para cada variante empleada,
además de la desviación estándar. La Figura (8) muestra
el diagrama de caja de los datos obtenidos para P1, P2,
P3 y P4, donde se puede observar que, a diferencia de los
datos sin ruido, śı existe una mayor variabilidad. A este
gráfico se le agregó una ĺınea horizontal correspondiente a
un valor VR correspondiente al valor real. Aún con dicha
variabilidad, los valores encontrados son aceptables. Para
visualizar los valores promedio y la desviación estándar

Figura 5. Diagrama de caja del parámetro 2 sin ruido

Figura 6. Diagrama de caja del parámetro 3 sin ruido

Figura 7. Diagrama de caja del parámetro 4 sin ruido

Figura 8. Diagrama de caja del parámetro 1-4 con ruido

de los parámetros P1, P2, P3 y P4 ver Tabla (2). La
Figura (9) muestra el diagrama de caja para los datos
m, M , l e I, donde la variable VR indica el valor real
y la variable Vp indica el valor promedio. En este caso
particular se observa que śı existe una mayor variabilidad
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Tabla 2. Valores promedio y desviación estándar para cada parámetro identificado

Valor promedio Desviación estándar
V P1 P2 P3 P4 P1 P2 P3 P4

S
/
ru

id
o V1 2.5953 0.38238 0.46416 4.5378 3.1963e-08 8.5217e-08 6.3547e-08 1.2121e-06

V2 2.5953 0.38238 0.46416 4.5378 2.9792e-08 6.7413e-08 5.1029e-08 1.0211e-06
V3 2.5952 0.38218 0.46397 4.5357 9.3796e-05 0.001871 0.0012844 0.026715
V4 2.5953 0.38238 0.46416 4.5378 3.8997e-08 1.0227e-07 7.8099e-08 1.5652e-06
V5 2.5953 0.38238 0.46416 4.5378 2.7419e-08 6.3512e-08 3.9666e-08 1.0097e-06

C
/
ru

id
o V1 2.6044 0.36392 0.4538 4.2651 8.0925e-08 1.2462e-07 1.067e-07 1.6204e-06

V2 2.6014 0.37512 0.45595 4.4803 8.5735e-08 1.7765e-07 1.5694e-07 2.2257e-06
V3 2.5932 0.40561 0.48694 4.7807 0.00077982 0.0044675 0.0046033 0.045646
V4 2.5939 0.40424 0.48509 4.774 1.1379e-07 1.1487e-07 1.3785e-07 1.005e-06
V5 2.593 0.37936 0.45968 4.5178 9.247e-08 1.6816e-07 1.4965e-07 2.066e-06

Figura 9. Diagrama de caja de parámetros independientes
sin ruido

que si solo se consideran los parámetros (3). Sin embargo,
la media tiende al valor real y no existe mucha dispersión
de Vp respecto a VR, por lo que los valores obtenidos son
aceptables.

6. CONCLUSIONES

La metodoloǵıa de identificación paramétrica propuesta
emplea el modelo dinámico del sistema que se está identi-
ficando, y en caso de existir no linealidades tales como la
fricción, estas se pueden incluir en el modelo dinámico aún
si no es posible escribirlas mediante una regresión lineal.
Además, la metodoloǵıa propuesta únicamente requiere
mediciones de entrada-salida, lo cual representa una ven-
taja respecto a métodos clásicos como el de Mı́nimos
Cuadrados. Por otro lado, la elección de una variante para
el problema de identificación paramétrica del péndulo
invertido usando ED es un factor que influye en la calidad
de los resultados, por lo que, considerando los valores pro-
medios aśı como la variabilidad de los datos, las mejores
elecciones para mediciones sin ruido son la variante V2 y
V5 que corresponden a rand / 2 / bin, current-to-best /
1 / bin correspondientemente. En el caso de mediciones
con ruido la variante V2 correspondiente a rand / 2 /
bin, provee mejores resultados. Como trabajo futuro se
pretende realizar la identificación del péndulo invertido
empleando mediciones obtenidas experimentalmente.
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