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Resumen This work proposes a straightforward methodology to address the problem of
parametric identification of an inverted pendulum system using the Differential Evolution
metaheuristic optimization algorithm. Five variants of the algorithm are evaluated to determine
which one performs best for this specific application, the main difference between the variants
is the mutation stage. To validate the results, 30 simulations were carried out for each variant
using both noise-free and noise-contaminated signals. This approach enables the use of robust
statistical metrics to support the reliability of the results. The experiments show that the
rand/2/bin variant yields the best performance in terms of accuracy and consistency under
both noisy and noise-free conditions. This conclusion is based on analyzing the average error
values and the variability observed across the simulations.
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1. INTRODUCCION

La identificacién paramétrica es el proceso que permite
estimar los valores numéricos de un modelo matemético
que describe un sistema, donde el objetivo es ajustar el
modelo para que represente lo més aproximado posible
el comportamiento observado del sistema real. Resolver
este problema ha generado diversas metodologias y ma-
neras de subclasificar el problema principal Corriou and
Courriou (2004). Entre las metodologias empleadas se han
utilizado técnicas de optimizacion continua y discreta Ju-
manov et al. (2024), ademds, se han identificado sistemas
dindmicos lineales y no lineales Semenov et al. (2019), Dy-
vak et al. (2022). Otros han experimentado con técnicas
de optimizacién metaheuristicas basadas en inteligencia
colectiva como PSO (Particle Swarm Optimization) Ha-
fez and Dhaouadi (2023), o metaheuristicas basadas en
estrategias evolutivas Qian et al. (2025). La Figura (1)
ilustra el esquema general del proceso de identificacién
paramétrica aplicable a cualquier sistema dinamico, y
en este caso particular, al péndulo invertido. La primera
etapa del proceso consiste en la generacién de datos,
la cual implica aplicar una senal de entrada que excite la
planta, ya sea experimental o simulada. Esta es la tnica
etapa en la que se requiere interaccién con la planta en
caso en que los datos se obtengan experimentalmente,
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Figura 1. Proceso de identificacién paramétrica emplean-
do metaheuristicas basadas en poblaciones

mientras que el resto del proceso se realiza mediante
simulaciones numéricas. Tras la excitacion, se registran las
respuestas del sistema, especialmente aquellos estados que
son medibles directamente, los cuales suelen corresponder
a las posiciones del sistema dinamico. Una vez registradas
las senales de respuesta de interés del sistema dindamico,
se da inicio al proceso de optimizacion. Esta etapa
comienza con la formulacién de un modelo matematico
que represente el comportamiento de la planta. A partir
de este modelo se plantea el problema de optimizacién
definiéndose las variables de diseno correspondientes a los
pardmetros a identificar, la funcién de costo, que evalia
la calidad del ajuste comparando los datos simulados y
experimentales, y las restricciones que aseguran que las
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Figura 2. Péndulo invertido.

soluciones obtenidas sean fisicamente viables y coherentes
con la dindmica del sistema. Ademds, es necesario selec-
cionar un algoritmo de optimizacién adecuado para resol-
ver el problema planteado. El resultado de este proceso
es la estimacién de los pardmetros que mejor describen
el comportamiento de la planta. Este trabajo propone
el empleo del algoritmo de Evolucién Diferencial (ED)
para identificar los parametros del péndulo invertido. La
identificacién paramétrica se plantea como un proceso de
optimizacién.

2. MODELO MATEMATICO DEL PENDULO
INVERTIDO

La Figura (2) muestra el diagrama del péndulo invertido,
el cual estd compuesto por un carro de masa M que
se desplaza horizontalmente una distancia x. Sobre este
carro se encuentra acoplado un péndulo de masa m,
longitud [ e inercia I, el cual oscila de forma angular
con respecto a la vertical descrita por el angulo 6. A este
sistema se le aplica una fuerza F, la cual actiia como senal
de excitacion para efectuar la identificaciéon paramétrica.
El modelo dindmico que describe el comportamiento del
péndulo invertido se muestra en (1) Bay (1999), el cual
se puede obtener a partir de las ecuaciones de Euler-
Lagrange Fantoni and Lozano (2012).

(m + M) & + mif cos(0) — mi6? sin(9) = F, 1)
(I +ml?) 6 + mii cos(0) — mglsin(f) = 0

Las ecuaciones del péndulo invertido (1) se pueden escri-
bir de manera matricial como se muestra en (2).

e o] ][] [5] o

A partir de la forma matricial del sistema mostrada en
la ecuacién (2) se identifican los grupos de pardmetros
relevantes para simplificar el proceso de identificacién
paramétrica. En consecuencia, los parametros a estimar
se presentan en la ecuacién (3).

P1:m+M
_ 2
Po=1T+ml (3)
P3:ml
P, =mgl

Por lo tanto, el sistema dindmico que modela el com-
portamiento del péndulo invertido, una vez definidos los
pardmetros a identificar, se expresa en la forma mostrada
en la ecuacion (4).
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Py Pycos(0)] [2] —Psf?sin(9)] _ [F )
Pscos(0) P 4 —Pysin(f) | |0

Para resolver las ecuaciones diferenciales que describen

el comportamiento del péndulo invertido, se lleva a cabo

una redefinicién de los estados, tal como se muestra en la

ecuacion (5).

T T

[z @60 0] =[x1 22 23 24] (5)
Finalmente, las ecuaciones dindmicas se transforman a
una representacién en espacio de estados con el objetivo
de facilitar e implementar la simulacién del modelo del
péndulo invertido, como se muestra en la ecuacién (6).

. x2

! _ Py Pssin(z3)x?+F Py—P3 Pj cos(x3) sin(xs)
5?2 _ P32cos(z3)2—P1 P2

xs3 T4

T4 cos(z3) sin(x3) Ps>x]+F cos(x3) Ps— P1 Py sin(x3)

P32cos(z3)2—P1 P>

(6)
Para resolver la ecuacién (6) se emplea el método de
integracién de Runge-Kutta de cuarto orden Jaan (2009),
mostrado en la ecuacién (7), donde: h es el paso de inte-
gracion y f,(t,y) es la funcién a integrar. Este método se
utiliza para obtener una mayor precisién en los resultados
durante la simulacién del sistema. Las condiciones inicia-
les empleadas en las simulaciones numéricas en el proceso
de identificacién deben ser las mismas que se utilizaron
para excitar la planta simulada o experimental.

Kl = hfa(tay)
h Ky
K2 = hfa <t+ 5,y+ 2)
h K
K3 = hf, <t+2,y+22) (7)

Ky=nhf,(t+hy+ K3)
1
y(t+h) = y(t) + 6 (Kl +2K2 +2K3+K4)

3. ALGORITMO DE EVOLUCION DIFERENCIAL

La optimizacién es un proceso iterativo que busca encon-
trar el maximo o el minimo de una funcién f(z), partiendo
de una funcién de costo conocida, la cual ponderara el
rendimiento de la optimizacién siempre y cuando las res-
tricciones sean satisfechas Belegundu and Chandrupatla
(2019). Formalmente, un problema de optimizacién no
lineal se define de la siguiente manera:

min/max f(X)

sujeto a ¢;(X) <0, i=1,....,m
h(X)=0, k=1,...,1 (8)
xfnggx;], j=1,...,D

donde X = (xl,:cz,...,xD)T € RP representa el con-
junto de posibles soluciones, f(-) representa la funcién
de costo a optimizar, ¢;(X) y hi(X) son restricciones de
desigualdad e igualdad, correspondientemente, xJL y oV
son los limites inferior y superior de las variables de diseno
z;, donde j = 1,...,D. El algoritmo de ED propuesto
por Kenneth Price y Rainer Storn Storn and Price (1997)
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es un método estocastico ampliamente reconocido por
su eficacia y rapida convergencia. Su funcionamiento se
inspira en la teoria de la evolucién de Darwin, donde los
individuos mas aptos son los que tienen mayores probabi-
lidades de sobrevivir y reproducirse. El algoritmo de ED
se compone de cuatro etapas fundamentales: inicializa-
cion de la poblacién de busqueda, generacion de nuevas
soluciones mediante mutacion, combinacién de individuos
a través de recombinacion y eleccion de los més aptos
mediante un proceso de seleccidn Price et al. (2006). La
inicializacion es la etapa en la que se generan aleatoria-
mente los individuos de la poblacién inicial, siguiendo la
siguiente expresion matematica:

Tijo0 = :EJL + rand;(0,1) - (xJU — x]L) , (9)
donde z; ;o representa el valor del j-ésimo pardmetro del

i-ésimo individuo, :cgj y xf son los limites inferior y supe-

rior de las variables de diseno, rand; (0,1) es un ntmero
aleatorio en el intervalo [0, 1]. La mutacién es la etapa en
la que cada individuo se combina con otros miembros de
la poblacién para generar variaciones, promoviendo asi la
diversidad en la bisqueda de soluciones. Esta operacién
se realiza comunmente mediante la estrategia DE /rand/1,
expresada como:

Vig=Xiy g+ F (Xiz,g - Xisug) ) (10)
donde V; 4 es el vector mutante asociado al i-ésimo indivi-
duo, X, 4, X, .9, Xig,q s0on individuos seleccionados alea-
toriamente de la poblacién, F € (0,1) es un pardmetro
de escala que controla la amplitud de la diferencia entre
los vectores. La recombinacion es el proceso mediante
el cual se combina el vector mutante V; , con el vector
original x;;, para generar un nuevo vector candidato
Ui ;¢ también llamado vector de prueba. Esta operacién
introduce variaciones adicionales y se define de la siguien-
te forma:

U, {Viie si (rand;(0,1) < C,) (1)
“19 | @i g, enotrocaso

donde v; ;4 es el j-ésimo componente del vector de
prueba, C, € [0,1] es el factor de cruza que determina
la probabilidad de tomar el valor del vector mutante. La
seleccidn es la etapa final del ciclo evolutivo, en la cual se
decide si el vector de prueba U; ; reemplaza al individuo
original x; ; en la siguiente generacién. Esta decision se
basa en la evaluaciéon de la funcién objetivo, eligiendo
siempre la solucién con mejor desempeno. El criterio de
seleccion se expresa como:

Ui,g7 si f(Ui,g)

) —_ (Xig)
Kigr1 = {Xi,g’ si f(Uig)

f
f(Xig)

\VARVA

(12)

3.1 Variantes del algoritmo de Evolucion Diferencial

Las variantes del algoritmo de ED se basan principalmen-
te en la modificacién de dos etapas del algoritmo: muta-
cién y recombinacién. La notacion genérica Das and Su-
ganthan (2011) para representar las variantes es ED//#/,
donde ED representa el algoritmo utilizado (comtinmente
omitido), especifica cémo el vector objetivo es seleccio-
nado, # indica la cantidad de indices involucrados en la
operacién, y representa el tipo de recombinacién. Este
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trabajo utiliza cinco variantes modificando Unicamente la
etapa de mutacién del algoritmo sin involucrar la recom-
binacién. Las variantes a utilizar son: rand / 1 / bin (13a),
rand / 2 / bin (13b), best / 1 / bin (13c), best / 2 / bin
(13d), current-to-best / 1 / bin (13e):
Vi Vig =iy g+ F (Tiyg — Tig g) (13a)
Vo Vig =i g+ F (Tiy,g — Tigg) + F (Tigyg = Tisg)
(13b)
V3 Vig = Tiyeurg + F (Tisyg — Tig,g) (13c)
Vit Vig =Tiyearg + F (Tiy g — Tin,g) + F (Tig,g — Tis,g)
(13d)
Vs i Vig =Tig + F (Tipesr.g — Tiyg) + F (Ti,g — Tin g)
(13e)

4. APLICACION DEL ALGORITMO DE ED A LA
IDENTIFICACION PARAMETRICA DEL PENDULO
INVERTIDO

Para abordar el problema de identificacién paramétrica
del péndulo invertido, el primer paso consiste en formular
el correspondiente problema de optimizaciéon no lineal
(8). Para ello, es fundamental definir adecuadamente las
variables de diseno, la funcién de costo y las posibles
restricciones que rigen el sistema, con el fin de plantear
una solucién efectiva al problema.

4.1 Variables de diseno

Las variables del disefio en este problema corresponden
a los parametros definidos en la parametrizacion dada
por la ecuacién (3). En este contexto, los pardmetros a
identificar corresponden a Py, P>, P3 y P4, los cuales
representan las incognitas del modelo dindmico a estimar,
representadas por (14).

X:[P17P27P3aP4]:[x17$27x3a‘r4] (14)

4.2 Funcion de costo

La funcién de costo f(z) utilizada en este problema co-
rresponde al error cuadratico medio (RMSE, por sus
siglas en inglés) calculado a partir del desplazamiento
lineal x y del desplazamiento angular 6. Esta métrica per-
mite cuantificar la diferencia entre las senales simuladas
por el modelo y las mediciones experimentales, evaluando
asi la calidad del ajuste paramétrico.

1 N

J(X) =1y | 7 D (@eap = Toim)” +
i (15)

1 N
2
%% N Zzzl (eewp - Hszm)

Donde N es la cantidad de datos, Tezp y Oexp son los
datos experimentales, T, ¥ Osim son los datos simulados
generados a través del algoritmo de optimizacién. w; y
wo son los pesos asignados a cada funcién de costo, para
que el problema multiobjetivo de optimizacién sea tratado
como un problema monoobjetivo con w; = 0.5y wy = 0.5.
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Tabla 1. Parametros de control: algoritmo ED

Parametro Variable Po
Tamano de la poblacién  Np 80
Variables de disefio D 4
Probabilidad de cruza Cr 0.9
Factor de escala F rand(0, 1)
Generaciones Imazx 500

4.3 Restricciones

Las restricciones en este problema estan determinadas
por la dindmica del sistema, la cual impone relaciones
especificas entre los pardmetros definidos en el modelo
del péndulo invertido. Estas restricciones aseguran que
las soluciones propuestas mantengan coherencia fisica y
cumplan con las ecuaciones que gobiernan el comporta-
miento del sistema:

hi(X) = () fa (x(t),t),verec. (6)/0.001 < 23 < 3
gg(X):P3—1.2P2>O 0.001 < z3 <1
93(X) =Py —P3>0 0.001 < z4 <5
4(X):P479P3>0

(16)

4.4 Pardmetros del algoritmo de ED

Los parametros de control del algoritmo de ED para
resolver el problema de optimizaciéon P, estdn definidos
en la tabla (1), los cuales corresponden al tamafio de la
poblacién, cantidad de variables de diseno, probabilidad
de cruza, factor de escala y la cantidad de generaciones
empleadas en cada simulacion.

4.5 Problema de optimizacion

El problema de optimizacién para la identificacién pa-
ramétrica del péndulo invertido queda formulado como se
indica en la ecuacién (17).

Encontrar:

min f(X)

X =[P P, P3 Py| =[r1 T2 T3 T4]

Sujeto a:

hi(X) = z(t) — fo (x(t),t),verec. (6)]0.001 < z; < 3
ng:.Pl P2>0 0.001 <z, <1
ggX:P3—12P2>O 0.001 < z3 <1
g3(X)= P,—P3>0 0.001 < z4 <5
ga(X)= P, —9P; >0

/\
-
~

-

4.6 Caso particular del problema de optimizacion

En los problemas de identificaciéon paramétrica, una estra-
tegia comun consiste en estimar conjuntos de parametros
en lugar de variables individuales. Esta aproximacién
facilita la busqueda de soluciones, ya que evita conflic-
tos derivados de las relaciones dinamicas entre variables
independientes. Por ejemplo, en productos de parametros,

Copyright® AMCA, ISSN: 2594-2492

existen multiples combinaciones posibles que producen el
mismo resultado, lo que puede introducir ambigiiedad y
variabilidad en el proceso de identificacién. Sin embargo,
en casos particulares como el del péndulo invertido es
posible plantear un problema de optimizacién que per-
mita estimar de forma individual los parametros, sin que
esto implique una alta variabilidad en los datos obtenidos.
Siguiendo el mismo enfoque y desarrollo del caso anterior,
se plantea un nuevo problema de optimizacién orientado
a la identificacién individual de los pardmetros, como se
muestra en la ecuacién (18):

Encontrar:

min [(X)]

X=[mMIIl =[x x2 x3 T4

Sujeto a:

hi(X) = &(t) — fa (x(t),t),verec. (2)]0.001 < z; < 2

a(X)= M-2m>0 0.001 < 25 < 2

g2(X) = gm12—1'>0 0.001 < z3 <1

9g3(X)=m—-1>0 05 < x4 <2
(18)

4.7 Observacion sobre el problema de identificacion
paramétrica del péndulo invertido

En el problema de identificacion paramétrica del péndulo
invertido empleando (3), no es posible reconstruir los
parametros fisicos tales como longitudes, masas e inercias.
No obstante, conociendo a priori la longitud del péndulo
es posible reconstruir el resto de los pardmetros fisicos a
partir de los pardmetros (3). Ademds, en el problema de
identificacion basado en los parametros fisicos del péndulo
invertido, disponer de un valor aproximado de la longitud
del péndulo y restringiendo el conjunto de posibles so-
luciones para este parametro permite obtener resultados
més precisos y estables del resto de los pardmetros.

5. RESULTADOS EXPERIMENTALES

Se realizaron 30 simulaciones por cada variante del algo-
ritmo de ED, tanto en escenarios sin ruido como consi-
derando ruido en las mediciones. El objetivo fue gene-
rar una poblacién de prueba que permitiera comparar
el desempeno de las distintas variantes del algoritmo vy,
al mismo tiempo, validar la confiabilidad de los datos
obtenidos mediante el uso del algoritmo ED. Los datos
fisicos son: m = 0.75lkg], M = 1.85[kg|, | = 0.62[m]
e I = 0.0961[kgm?], y los pardmetros a identificar son:
Py = 2.6[kg], P, = 0.3844 [kgm?], P3 = 0.465[kgm],
y Py = 45616 [kgm/s?]. La sefial de excitacién F co-
rresponde a un pulso, lo que genera como respuesta un
movimiento angular # y un desplazamiento lineal z los
cuales se visualizan en la Figura (3). En lo que corres-
ponde al método numérico Runge-Kutta se utilizé6 un
paso de integracion de h = 0.01. Para simular el ruido
de medicién se utilizé ruido Gaussiano generado por la
funcién awgn(X,snr) de Matlab con snr=20. Para la
visualizacién de los datos obtenidos se utilizé el diagrama
de caja, el cual es una representacién grafica que resume
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Figura 4. Diagrama de caja del parametro 1 sin ruido

la distribucién de un conjunto de datos numéricos a través
de cinco estadisticas clave: minimo, primer cuartil (Q1),
mediana (Q2), tercer cuartil (Q3) y méximo. Cualquier
valor fuera de este rango se considera un dato atipico y
se marca individualmente Navidi (2006). La Figura (4)
presenta los datos obtenidos para las distintas variantes
del algoritmo en relacién con el parametro P;. Se observa
que, salvo en el caso de la variante V3, la variabilidad de
los datos es baja, lo cual refleja una alta consistencia en
los valores estimados para dicho pardametro. Las Figuras
(4), (5), (6), (7) muestran los datos obtenidos para los
parametros Py, Py, P3 y P,. Cada figura muestra el
diagrama de caja comparando las variantes Vi, Vs, Vs,
Vi v V5 del algoritmo de ED. Se puede observar que la
variante V3 es la que muestra mayor dispersién de datos.
Los parametros P; y P, muestran la mayor consistencia en
datos, mientras que los pardmetros P, y P3 muestran una
mayor variabilidad, ademéas de algunos puntos atipicos,
principalmente en las variantes V; y V4. No obstante,
dada la escala que se maneja, dicha variabilidad es muy
pequena. La tabla (2) muestra los valores promedios obte-
nidos de las 30 simulaciones para cada variante empleada,
ademds de la desviacién estandar. La Figura (8) muestra
el diagrama de caja de los datos obtenidos para Py, P,
P; y Py, donde se puede observar que, a diferencia de los
datos sin ruido, si existe una mayor variabilidad. A este
grafico se le agregd una linea horizontal correspondiente a
un valor Vi correspondiente al valor real. Ain con dicha
variabilidad, los valores encontrados son aceptables. Para
visualizar los valores promedio y la desviacién estandar

Copyright® AMCA, ISSN: 2594-2492
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de los pardmetros Py, P», P; y P, ver Tabla (2). La
Figura (9) muestra el diagrama de caja para los datos
m, M, | e I, donde la variable Vx indica el valor real
y la variable V,, indica el valor promedio. En este caso
particular se observa que si existe una mayor variabilidad
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Tabla 2. Valores promedio y desviacién estandar para cada pardmetro identificado

Valor promedio

[

Desviacion estandar

VP P> P3 Py Py Py Ps Py
° Vi 25953  0.38238 0.46416 4.5378  3.1963e-08 8.5217¢-08 6.3547¢-08  1.2121e-06
< Vo 25953  0.38238 0.46416  4.5378  2.9792e-08 6.7413e-08  5.1029¢-08  1.0211e-06
2 Vs  2.5952 0.38218 0.46397 4.5357  9.3796e-05 0.001871 0.0012844 0.026715
o Va 25953  0.38238 0.46416  4.5378  3.8997e-08 1.0227e-07  7.8099e-08  1.5652e-06
Vs 25953  0.38238 0.46416 4.5378  2.7419e-08 6.3512e-08  3.9666e-08  1.0097e-06
° Vi 2.6044 0.36392 0.4538 4.2651  8.0925e-08 1.2462e-07 1.067e-07 1.6204e-06
< Vo 26014 0.37512 0.45595 4.4803 8.5735e-08 1.7765e-07  1.5694e-07  2.2257e-06
V3 25932 040561 048694 4.7807 0.00077982  0.0044675 0.0046033  0.045646
8 Vi 25939 0.40424 0.48509 4.774 1.1379e-07 1.1487e-07  1.3785e-07 1.005e-06
Vs  2.593 0.37936  0.45968 4.5178  9.247e-08 1.6816e-07  1.4965e-07 2.066e-06
m M Belegundu, A.D. and Chandrupatla, T.R. (2019).
0.76 % Vim0.75 L9 timization concepts and applications in engineering.
Fonl - Fuss| ‘ Cambridge University Press.
Soml u T A D Corriou, J.P. and Courriou, J.P. (2004). Process control.
o " s L vi=—1ss Springer.
s + L B Das, S. and Suganthan, P.N. (2011). Differential evolu-
' Masa Masa tion: A survey of the state-of-the-art. IEEE Transac-
tions on Fvolutionary Computation, 15(1), 4-31. doi:
1 - ! 10.1109/TEVC.2010.2059031.
01 | va=o0061 ' T Dyvak, M., Manzhula, V., and Dyvak, T. (2022). Iden-
& T | ification of parameters of interval nonlinear models
2 000 000 tificat fp t f int 1 1 del
=0 “-““”“u 5 0841V, — 063 m of static systems using multidimensional optimiza-
i = 062 = tion. Computational Problems of Electrical Enginee-
i [ e ring, 12(2), 5-13.
Inercia Longitud antoni, I. and Lozano, R. . Non-linear control for
Fant I. and L , R. (2012). Non-l trol

Figura 9. Diagrama de caja de parametros independientes
sin ruido

que si solo se consideran los pardmetros (3). Sin embargo,
la media tiende al valor real y no existe mucha dispersién
de V}, respecto a Vg, por lo que los valores obtenidos son
aceptables.

6. CONCLUSIONES

La metodologia de identificacién paramétrica propuesta
emplea el modelo dindmico del sistema que se estd identi-
ficando, y en caso de existir no linealidades tales como la
friccién, estas se pueden incluir en el modelo dindmico atin
si no es posible escribirlas mediante una regresién lineal.
Adema3s, la metodologia propuesta unicamente requiere
mediciones de entrada-salida, lo cual representa una ven-
taja respecto a métodos clasicos como el de Minimos
Cuadrados. Por otro lado, la eleccién de una variante para
el problema de identificacién paramétrica del péndulo
invertido usando ED es un factor que influye en la calidad
de los resultados, por lo que, considerando los valores pro-
medios asi como la variabilidad de los datos, las mejores
elecciones para mediciones sin ruido son la variante V5 y
Vs que corresponden a rand / 2 / bin, current-to-best /
1 / bin correspondientemente. En el caso de mediciones
con ruido la variante Vo correspondiente a rand / 2 /
bin, provee mejores resultados. Como trabajo futuro se
pretende realizar la identificaciéon del péndulo invertido
empleando mediciones obtenidas experimentalmente.
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