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Abstract

In this brief note we recall the little-known fact that, for
linear regression equations with intervally excited (IE)
regressors, standard Least Squares parameter estimators
ensure finite convergence time of the estimated parame-
ters. The convergence time being equal to the time length
needed to comply with the IE assumption. As is well-
known, IE is necessary and sufficient for the identifiability
of the linear regression equation—hence, it is the weakest
assumption for the on- or off-line solution of the param-
eter estimation problem.

1 Introduction

In the last few years we have seen a significant growth of
interest in the development of algorithms (for optimiza-
tion, stabilization, state observation or parameter estima-
tion) with finite (or fixed) convergence time (FCT). With
some notable exceptions, the vast majority of these algo-
rithms appeal to signal differentiation and/or injection of
high-gain (HG) in the control loop—hence, this research
line has mainly attracted control theoreticians.
Researchers interested in practical applications are well

aware of the disastrous amplification effect of differenti-
ation and/or HG on the inevitable presence of noise—
see, e.g., [2] for a recent example of this unavoidable
phenomenon. Moreover, the claim of FCT is, in real-
ity, specious in applications since—due to the presence of
noise—the best we can expect is that the controlled tra-
jectory enters a band determined by the noise amplitude.
It is pertinent to note that the claim of “robustness to
external disturbances” of the prototypical HG injection
scheme of sliding mode (SM) control (that injects in the
loop HG via the incorporation of a relay, which is an in-
finite gain operator) refers only to the case of “matched
disturbances”, i.e., those entering into the image of the in-

put matrix disregarding the output measurement noise—
a clarification often omitted in the SM literature.

Algorithms that achieve FCT have been reported in
almost all control problems, with the FCT objective
achieved via differentiation and/or the injection of HG.
An early summary of the results on this topic may
be found in [4], where schemes with SMs, supertwist-
ing and differentiation operators, are discussed. An-
other reference, that concentrates on the role played by
homogeneity—introduced to the control community by
[5, 11]—is given in [9]. It is interesting to note that
the kind of nonlinearities that appear in most physical
systems are transcendental functions, e.g., sinusoidal, ex-
ponential, logarithmic, and are not homogeneous—hence,
the results reported in [9] are of limited interest for them.
HG injection is also used in classical optimization prob-
lems to achieve FCT. For instance, in [6] a search gain
with a normalized gradient algorithm is defined via a Ca-
puto fractional derivative. The highly fashionable topic
of consensus control has also been addressed with HG
schemes to achieve FCT. For instance, in [10] SM-like
signum functions are added in the control loop. The use
of HG injection via the addition of fractional powers has
also had a wide spread popularity in several control prob-
lems, including observer design [3], control of nonlinear
systems [7, 16] and parameter estimation [22, 26]—it is
interesting to note the deleterious effect of noise in these
estimators, vividly shown in [26, Figs. 2 and 4].

As mentioned above, the research on FCT control
schemes has, mainly, been driven by (mathemathically
skillful) control theoreticians, whose involved derivations
usually lead to highly complex algorithms. As an illus-
tration of this point the reader is referred to the FCT
state observer for a linear time-invariant (LTI) observable
(A,B,C)-system proposed in [9, Theorem 5.1], namely:

˙̂x = Ax̂+Bu+ g(Cx̂− y),
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where g : Rk → Rn is a map defined as

g(s) = −γ

2
|γs|ν exp(ln |γs|νG0)P

−1C⊤s

with P ∈ Rn×n and G0 ∈ Rn×n matrices satisfying an
algebraic [9, equation (5.4)] and a linear matrix inequality
[9, equations (5.5), (5.6)], γ > 0 and ν < 0. This observer,
compared with the classical Luenberger observer g(s) =
−Ls, can hardly be classified as “easily implementable”.
See also [9, Theorem 4.4] for a similarly complex state
feedback controller for FCT stabilization of a controllable
LTI system.
Our interest in this paper is on the topic of on-line,

continuous-time, parameter estimators with FCT, where
the unknown parameters satisfy a linear regression equa-
tion (LRE) of the form

y(t) = ϕ⊤(t)θ, (1)

where y(t) ∈ R and ϕ(t) ∈ Rq are measurable signals
and θ ∈ Rq is a vector of unknown, constant parame-
ters.1 In particular, we are interested in least-squares
(LS) algorithms [21]—the interested reader is referred to
[19, Subsection 1.1] for a review of the recent results in
LS parameter estimators.
The rest of the paper has the following structure. Some

historical preliminaries on LS estimators are given in Sec-
tion 2. The main result, the proof that standard LS with
IE regressors yields an FCT algorithm, is given in Sec-
tion 3. In Section 4 we compare in simulations the per-
formance of the following estimators: FCT-LS, standard
LS and the FCT estimator with HG injection reported in
[26].

2 Historical Preliminaries

To the best of our knowledge the first time that a claim
of FCT for LS estimators was published in [17]—reported
again 20 years later in [1]. The algorithm in [17] was
motivated by the normalization results of [12] and has
several major numerical drawbacks, thoroughly discussed
in [20].
A major breakthrough in the understanding of LS es-

timators is the observation that F−1(t)θ̃(t) is constant,
with F (t) ∈ Rq×q the covariance matrix and θ̃(t) ∈ Rq

the parameter error. This observation was made in [8,
Equation 17] for the case of discrete-time LS estimators
without forgetting factor, and it was extensively exploited
for the design of indirect adaptive controllers [14]. To il-
lustrate such an observation, we use an unnormalized LS
algorithm without a forgetting factor:

˙̂
θ(t) = F (t)ϕ(t)[y(t)− ϕ⊤(t)θ̂(t)]

Ḟ (t) = −F (t)ϕ(t)ϕ⊤(t)F (t), F (0) = F⊤(0) > 0.

1We consider, without loss of generality, the simplest case of
scalar signal y(t)—the extension to the vector case follows verbatim.

Computing now

d

dt

(
F−1(t)θ̃(t)

)
= F−1(t)

˙̃
θ(t) + Ḟ−1(t)θ̃(t)

= −F−1(t)F (t)ϕ(t)ϕ⊤(t)θ̃(t) + ϕ(t)ϕ⊤(t)θ̃(t)

= 0,

where we have used (1) in the first right hand term of the
second equation and the fact that Ḟ−1(t) = ϕ(t)ϕ⊤(t) in
the second term.

An immediate consequence of this fact is that

θ̃(t) = F (t)F−1(0)θ̃(0), (2)

and equation that appears in [8, equation (17)] and later
on [23, equation (8.108)] for an (unnormalized) LS with
forgetting factor.

Two key steps, carried out in [24, Lemma 3.5], that
lead to the FCT result are:

(i) the rearrangement of (2) in the form

[I − F (t)F−1(0)]θ = θ̂(t)− F (t)F−1(0)θ̂(0);

(ii) the observation that the following implication is true

∃Tc > 0, ρ > 0 :

∫ Tc

0

ϕ(τ)ϕ⊤(τ)dτ ≥ ρIq (3)

⇒ det{Iq − F (t)F−1(0)} ≠ 0, ∀t ≥ Tc.

A regressor ϕ(t) satisfying the inequality above is said
to be IE,2 a term first coined in [13]. The same steps
were carried out for (continuous- and discrete-time) LS
with forgetting factor in [19], but the connection with
FCT was not established.

It should be underscored that, even though the two
properties above were reported in [24, Lemma 3.5] no ref-
erence is made that, an immediate conclusion from them,
ia the following fact::

Standard LS under IE is a FCT parameter estimator.

This is, of course, our main message that, to the best
of our knowledge, is reported here for the first time.

3 Standard LS Estimation has
FCT

In this section we present the proposed FCT-LS estima-
tor.

2Called “exciting over an interval” in [24, Definition 3.1], where
the limits of integration are taken as [σ0, σ0 + Tc], with σ0 ≥ 0.
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Proposition 1. Consider the regression equation (1) and
assume ϕ(t) is IE and bounded. Define the standard LS
estimator with forgetting factor [23, Subsection 8.7.6].

˙̂
θ(t) = γFF (t)ϕ(t)[y(t)− ϕ⊤(t)θ̂(t)] (4a)

Ḟ (t) = −γFF (t)ϕ(t)ϕ⊤(t)F (t) + χ(t)F (t) (4b)

ż(t) = −χ(t)z(t) (4c)

χ(t) = χ0

(
1− ∥F (t)∥

k

)
(4d)

with initial conditions θ̂(0) = θ0 ∈ Rq, F (0) = 1
f0
Iq,

z(0) = 1 and tuning gains the scalars γF > 0, f0 > 0,
χ0 > 0 and k ≥ 1

f0
.

For t ≥ Tc, define the signal

θFCT (t) := [Iq − z(t)f0F (t)]−1[θ̂(t)− z(t)f0F (t)θ0]. (5)

(i) For all initial conditions this signal verifies

θFCT (t) = θ, ∀t ≥ Tc.

(ii) All the signals are bounded.

Proof. The result is contained in [24, Lemma 3.5]
for (normalized) LS without forgetting factor and, for
LS+Dynamic Regression Extension and Mixing (DREM)
of [19] with forgetting factor, it follows directly from the
proof of [19, Proposition 1], where it is shown that the
matrix Iq − z(t)f0F (t) is full rank for t ≥ Tc. □□□□□□

Regarding the IE assumption it is important to recall
the lemma below [25], which shows that the IE assump-
tion is necessary and sufficient to estimate the parameter
θ from the LRE (1) with on- or off-line estimators.

Lemma 1. The LRE (1) is identifiable3 if and only if the
regressor vector ϕ(t) is IE.

Before closing this section we would like to underscore
the difference of the FCT property of LS described in
Proposition 1 and the FCT property of the algorithms
reported in [1, 12, 17]. The former is a bona fide on-line
estimator, which turns out to be the classical LS. On the
other hand, the three other schemes are akin to off-line
schemes where:

(i) We collect a sufficient amount of data until the set
of equations defining the parameter becomes well-
posed.

(ii) Solve the resulting algebraic equations to identify the
parameters.

4 Simulation Results

In this section we present simulations of the proposed
FCT-LS estimator and compare its performance with the
standard asymptotically convergent LS one and with the
HG based one reported in [26]—in particular, in the face
of measurement noise.

3See [25, Definition 2.2] for the definition of “identifiable” LRE.

4.1 Example 5 of [15]

We consider here Example 5 from [15] to show that the
new proposal has a better behavior in comparison to stan-
dard LS and HG -based techniques.

Consider the second order stable linear system de-
scribed by

ẋ1(t) =x2(t)

ẋ2(t) =− θ1x1(t)− θ2x2(t) + θ3u(t)

or equivalently

ẍ1(t) = −θ1x1(t)− θ2ẋ1(t) + θ3u(t) (6)

where θ1, θ2 and θ3 are unknown parameters. Applying
to both sides of (6) the filter

H(p) =
1

p+ λ

where p := d
dt and λ > 0, and rearranging the terms, we

get the LRE (1) with

y(t) = pH(p)[x2(t)]

ϕ(t) = H(p)[col (−x1(t), −px1(t), u(t))]

and θ := col(θ1, θ2, θ3).
In what follows, we compare the standard asymptotic

LS estimator (4), the FCT estimator (5) and the HG-
based estimator given by (9) of [26].

For the system (6), we use the same conditions of [19],
that is, we choose λ = 1 and set to zero the initial con-
ditions of the filters. The vector of unknown parameters
is chosen as θ = col(2, 3, 1), and the input signal is set
u(t) = 5. Such input signal provides only interval (but
not persistent) excitation to the regressor ϕ, allowing for
FCT parameter estimation.

To carry out the simulations of (4) and (5), we chose
the initial value of the parameter estimation vector as
θ̂(0) = col(0.1, 0.1, 0.1) and set the tuning parameters of
the proposed estimator to γF = 30.3, f0 = 4, χ0 = 6
and k = 10. The FCT estimate (5) is computed for time
instances when

det (Iq − z(t)f0F (t)) ≥ δFCT ,

where δFCT is set to 0.001. For the HG-FCT estimator
of [26], we set β1 = 7, β2 = 3, αi = 10βi for i = 1, 2,
α = 0.5, and we set the gain γ and the initial conditions
to the same values as for the FCT-LS estimator. The
choice of all the tuning gains was done, as usual, via a
painful trial-and-error procedure

In Fig. 1 we appreciate the transient behavior of the
estimation errors θ̃i with i = 1, 2, 3 using the standard LS
(4), the new FCT-LS (5), and the HG-FCT estimator. As
expected, the LS estimator does not converge under the
IE condition, whereas both FCT-LS and HG-FCT exhibit
FCT.
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Figure 1: Transient behavior of the estimated parame-
ters θ̃i(t) with i = 1, 2, 3.
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Figure 2: White noise signal

On the other hand, it is widely accepted that control
and estimation methods that depend on HG injection are
susceptible to noise. To illustrate the robustness of esti-
mators, we repeat the simulations by adding a white noise
signal (Fig. 2) of small amplitude to the measurable sig-
nal y(t). The result of the simulation is shown in Fig. 3.
We notice that even in the presence of noise, the estima-
tion errors of FCT estimators oscillate around zero. How-
ever, the proposed FCT-LS estimator has significantly
smaller magnitude of oscillations compared to the HG-
FCT estimator—verifying the well-known fact that, since
it does not rely on the injection of high-gain—it is less
sensitive to noise.
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Figure 3: Transient behavior of the estimated parame-
ters θ̂i(t) with i = 1, 2, 3 with noise.

5 Concluding Remarks

There are many parameter estimators for LRE reported
in the literature that ensure FCT without the injection
of high-gains. A recent survey of some of them may be
found in [18]. A particular feature of the one reported in
[18] is that it preserves its alertness, that is, it is able to
track parameter variations still ensuring the FCT prop-
erty.4 All of these schemes involve major variations to the
underlying estimation scheme—either gradient search or
LS. Our objective with the present note is to bring to
the readers attention the fact that it is possible to en-
sure FCT with the classical LS scheme, without any such
modification.
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