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Abstract: This work addresses the dynamic inverse problem of estimating the temperature
distribution in a one-dimensional bar from noisy observations at one of its ends. The model is
based on the heat equation with Neumann boundary conditions, which is discretized spatially
and temporally. A Kalman filter is then implemented to track the thermal evolution of the
system. The results show that, even with partial information and noise, it is possible to efficiently
reconstruct the internal thermal state. This technique is of interest in systems where direct access
to all states is not feasible, as well as in thermal monitoring and real-time control applications.
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1. INTRODUCCION

La conduccién de calor es un proceso fundamental de
transferencia de energia térmica en medios sélidos, liquidos
y gaseosos, y es gobernada por gradientes de temperatura,
tal como se explica en Incropera and DeWitt (1999). Este
fenémeno se encuentra en un amplio rango de aplicaciones,
desde sistemas industriales como hornos, intercambiado-
res de calor y procesos metalirgicos, hasta dispositivos
biomédicos y electrénicos, donde el control y monitoreo
térmico son criticos para garantizar la seguridad y eficien-
cia de operacion.

En ambitos experimentales o industriales, estimar el gra-
diente de temperatura de un sistema suele requerir la
instalacion de multiples sensores fisicos distribuidos espa-
cialmente. Sin embargo, esta aproximacién presenta im-
portantes limitaciones: los sensores pueden ser costosos,
invasivos o técnicamente inviables de instalar, especial-
mente en sistemas con geometrias complejas y condiciones
extremas. Ademas, la precisién puede verse comprometida
por el ruido inherente a las mediciones y restricciones
préacticas de colocacién.

En el contexto anterior, es comtun enfrentar la necesidad de
conocer la evolucion de la temperatura en regiones donde
no se cuenta con sensores directos. Este tipo de problemas,
conocidos como problemas inversos dinamicos, requieren
reconstruir informacién interna del sistema a partir de
observaciones parciales, a menudo ruidosas, ubicadas en
la frontera del dominio fisico tal como se describe en Bai
et al. (2020). La solucién precisa y robusta de estos pro-
blemas resulta esencial para tareas de control automatico,
monitoreo en tiempo real y diagndstico predictivo.

* Este trabajo fue realizado gracias a los programas UNAM-
DGAPA-PAPIME PE100725 y UNAM-DGAPA-PAPIIT IT1000724.

Ante estas dificultades, surgen enfoques alternativos como
los sensores virtuales y las técnicas de estimacién de es-
tados. Estos métodos permiten inferir el comportamiento
interno del sistema a partir de modelos fisicos y un niimero
limitado de observaciones externas. Su implementacién
ha cobrado creciente relevancia en entornos didacticos y
académicos, ya que permite ilustrar conceptos de mode-
lado, simulacién y control de sistemas distribuidos sin
requerir instrumentacién extensa, a la vez que favorece
la comprension de fenémenos complejos mediante herra-
mientas computacionales accesibles.

Particularmente, la ecuacién del calor, una ecuaciéon en
derivadas parciales (EDP) que describe la distribucién
de temperatura en medios continuos, ofrece un marco
natural para modelar estos sistemas. Sin embargo, resolver
el problema inverso asociado a dicha ecuacion plantea retos
significativos debido a su caracter mal condicionado y a la
amplificacién del ruido cuando se infiere la solucién desde
observaciones limitadas como propone Ivanchov et al.
(2008).

Una estrategia eficaz para abordar este tipo de inferencia
es el uso del filtro de Kalman, un algoritmo recursivo de
estimacién de estados que combina informaciéon a priori
del modelo con observaciones ruidosas para generar esti-
maciones éptimas como describe Kalman (1960). Aunque
originalmente fue desarrollado para sistemas lineales de
dimension finita, el filtro de Kalman ha sido extendido
y aplicado exitosamente a sistemas dindmicos distribuidos
gobernados por EDPs; mediante técnicas de discretizaciéon
espacial y temporal que convierten el problema en uno de
dimensién finita segin Gonzélez et al. (2015).

1.1 Estado del Arte

La estimacién de estados en sistemas distribuidos ha si-

29%) ampliamente abordada en la literatura. Libros como
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“Numerical Solution of Partial Differential Equations” en
Morton and Mayers (2005) ofrecen fundamentos para la
discretizacién y el andlisis numérico de ecuaciones en de-
rivadas parciales, esenciales para aplicar técnicas de esti-
macién. Por su parte, en el libro ” Optimal State Estima-
tion” de Simon (2006) se presenta una revision exhaustiva
de variantes del filtro de Kalman, incluyendo el extendido
y el adaptativo, en sistemas dindmicos. En Banks and
Kunisch (1989) a través del libro .Pstimation Techniques
for Distributed Parameter Systems”, se formalizaron los
métodos de estimacién para sistemas con parametros dis-
tribuidos, proporcionando bases tedricas para su imple-
mentacion en EDPs.

En los tltimos anos, estudios como el de Qi et al. (2019)
en “Real-time reconstruction of the time-dependent heat
flux and temperature distribution in participating media
by using the Kalman filtering technique” han demostrado
la aplicacion del filtro de Kalman en problemas de trans-
ferencia de calor, validando su uso en contextos con ruido
en los datos.

En este trabajo se aborda el problema de estimar la
distribucién de temperatura en una barra unidimensional
a partir de observaciones ruidosas realizadas tinicamente
en uno de sus extremos. Para ello, se plantea un modelo
directo basado en la ecuacion del calor con condiciones de
frontera de Neumann y se implementa un filtro de Kalman
sobre una discretizacién espacio-temporal del sistema. El
objetivo es evaluar la capacidad del filtro para reconstruir
la evolucién térmica interna del sistema a pesar de contar
con informaciéon incompleta y contaminada por ruido.
Este enfoque es relevante no solo desde el punto de vista
académico, sino también por su aplicabilidad directa en
sistemas donde no es posible la implementacién de la
instrumentacién completa.

2. MARCO TEORICO
2.1 Fcuacion de calor

La ecuacién de calor (1) descrita en Martinez (2021) y
Haberman (2012) es una ecuacién en derivadas parciales
de segundo orden que describe cémo varia la temperatura
T(x,t) en un medio dado a lo largo del tiempo ¢ y el espacio
z. La forma unidimensional de la ecuacién de calor en un
medio homogéneo e isétropo se expresa como:

ou(z,t)  0*u(z,t) 1)

ot ox2
donde Qu(x,t)/0t es la tasa de cambio de la temperatura
con respecto al tiempo. a es la difusividad térmica del
material, una constante positiva que depende del material.
0?u(x,t)/0x? es la segunda derivada de la temperatura con

respecto a la posicién, que representa la curvatura de la
distribucién de temperatura en el espacio.

La ecuacion del calor considerada ha sido formulada en
variables adimensionales, es decir, tanto z, ¢, como u(zx, t)
han sido escalados mediante constantes caracteristicas
del sistema fisico. Esto permite una representacion més
general del fenémeno, y por ello, las graficas presentadas
no indican unidades fisicas explicitas.
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2.2 Filtro de Kalman

El algoritmo de filtro de Kalman consta de tres fases, a
priori (prediccién), célculo de la ganancia de Kalman y a
posteriori (correccién). Dentro de estas fases estd el vector
de estado, el cual contiene las variables que deseamos
filtrar a través del algoritmo de Kalman. En cambio,
el vector de medicién es la agrupacion de las variables
medidas disponibles y, en el caso particular, las estimadas.
La estimaciéon a priori se realiza con base en el modelo
dinamico del sistema, tomando en cuenta la estimacion del
instante anterior sin tomar en cuenta la informacion del
vector de medicién como describe Castro-Toscano et al.
(2018). En la Fig. 1 se muestra cémo cada componente
del filtro de Kalman interactia para proporcionar una
estimacién precisa del estado del sistema en cuestion.

|

ZL [ estimacion Pk_ Ganancia Kﬁ Estimacion | Xk
INS a priori de Kalman a posteriori [
R
Retraso
k=1

P

Figura 1. Diagrama de bloques del filtro de Kalman reali-
mentado. Tomada de Castro-Toscano et al. (2018).

3. METODOLOGIA
3.1 Discretizacion del modelo

Se consideré una barra conductora de calor de longitud
unitaria: z € [0, 1]. La temperatura de la barra se denota
por u = u(x,t). La distribucién inicial de temperatura de
la barra se denota por u(x,0) = ug(x).

El modelo directo para la evolucién temporal esta descrito
por la ecuacién del calor (1) con condiciones de frontera
de Neumann homogéneas descritas por

ou(0,t)  du(l,t) @)

oxr Oz

que imponen que no existe flujo térmico a través de
los extremos, es decir, los extremos de la barra estan
térmicamente aislados para analizar la redistribucién del
calor sin pérdida energética por los bordes como especifica
LeVeque (2007). Se asumié que la constante de difusividad
térmica del material es igual a 1. La condicién inicial se
definié como un pulso gaussiano centrado en z = 0.5, esto

| (3)

A pesar de que el filtro de Kalman se podia aplicar a este
modelo en tiempo continuo, se decidié trabajar en tiempo
discreto para disminuir el costo computacional en el caso
de que se quisiera implementar el algoritmo en un FPGA
o algun microprocesador.

207

u(z,t) = exp(—100(z — 0.5)%).

Para ello la ecuacién de calor (1) fue discretizada, divi-
diendo el intervalo [0, 1] en n subintervalos equiespaciados
de longitud Az = 1/n. Los puntos de la malla espacial se
definieron como z; = j/n,donde j € Zy j € {0,1,...,n}.
La funcién u(z, t) evaluada en estos puntos se denota como

2d (1) = ulz;, 1),
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Se utilizé6 un esquema de diferencias finitas centradas de
segundo orden para aproximar la segunda derivada espa-
cial §%u(z,t)/0x?, como se describe en LeVeque (2007) y
Smith (1985). La aproximacién obtenida es la siguiente:

TG 8) o (371 1) — 200 (1) + 071 1)

para todo j € {1,2,...,n— 1} C Z.

(4)

Las condiciones de frontera se aproximan mediante:

ul(t) =u’(t), w"TH(t) =u"(t), (5)
lo cual equivale a suponer condiciones de simetria en
los extremos del dominio. Bajo esta aproximacién, es
posible eliminar las temperaturas en los nodos de frontera
y formular una ecuacién de evoluciéon semi-discretizada
que describe la dindmica de la temperatura en los nodos
interiores como:

du(t)

o = Lu(t), ©)

donde u(t) € R"~! representa el vector de temperaturas
en los puntos interiores:

ul (1)
u(t)
unfl(t)
y la matriz L € R(~D*(=1) est4 dada por:
-1 1
1 -2 1
L=n? S (®)
1 -2 1

3.2 Filtro de Kalman

Para estimar la evolucién del estado del sistema, se empled
un modelo de evolucién basado en el esquema de Euler
hacia adelante, aplicado a la ecuacién de calor previamente
discretizada en el espacio. Este modelo permite calcular el
estado del sistema en el siguiente instante de tiempo ¢;1,
dado el estado actual en t;, mediante la siguiente ecuacién:

utj1) = ulty) + AtLu(t;) + vji, (9)
donde u(t;) € R"™! es el vector de temperaturas en los
nodos interiores en el tiempo t;, L € R(=Dx(n=1) ¢g 1a
matriz Laplaciana obtenida por discretizacién espacial, At
es el paso temporal, ;11 ~ N (0, Q) representa el ruido del
modelo, con Q € R("=D*("=1) 13 matriz de covarianza del
proceso, que modela la incertidumbre asociada a errores
numeéricos o a la dindmica no modelada.

El modelo de observacién se formulé como una funcién
lineal del estado méas un término de ruido gaussiano. De
acuerdo con Law et al. (2015), la ecuacién de observacién
es:

Yy :Hu(tj)—i-ej, (10)
donde y; € R es la observacién realizada en el tiempo t;,
H € R ("1 ¢g una matriz que extrae la componente
correspondiente a la temperatura cercana al extremo iz-
quierdo de la barra (es decir, la primera entrada de u(t;)),
ej ~ N(0,R) es el ruido de medicién, con R = 0? € R
representando su varianza.
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El objetivo es estimar el vector de estado u(t;), es decir,
la distribucién de temperaturas en los nodos interiores de
la barra, a partir de observaciones ruidosas en un punto
fijo. Este problema puede considerarse como un problema
inverso, en el cual se desea reconstruir el estado completo
del sistema a partir de mediciones parciales. En este caso,
se supone que las observaciones de temperatura se realizan
en tiempos discretos t; = jAt, inicamente en un extremo
de la barra (posicién z = 0).

4. RESULTADOS Y DISCUSION

Para validar la implementaciéon del filtro de Kalman, se
discretizo6 el dominio espacial en n = 20 nodos interiores y
se utilizo el esquema explicito de Euler para la evolucion
temporal. Los datos de observacién fueron generados de
forma sintética anadiendo perturbaciones gaussianas de
media cero y varianza o2 = 0.01 a los valores de tempera-
tura simulados en el nodo correspondiente a x = 0. Esta
estrategia permite evaluar el desempeno del estimador en
condiciones controladas, considerando tanto la evolucion
del modelo como la presencia de ruido de medicién.

La evolucién real de la temperatura en el centro de la
barra (r ~ 0.5) se muestra en la Fig. 2, esta mostré un
difuminado progresivo de la distribucion inicial, tal como
se espera del comportamiento disipativo de la ecuacion del
calor. Inicialmente el calor estd concentrado en el centro
de la barra, como no hay una fuente constante de calor en
el dominio, este se difunde hacia los extremos (z = 0 y
x = 1) con el tiempo.

Temperatura
=

Tiempo a

Figura 2. Representacion del comportamiento de la tem-
peratura a lo largo de la barra.

En la Fig. 3 se muestran las observaciones ruidosas gene-
radas en el extremo de la barra: x = 0; estas mostraron
una alta variabilidad en comparaciéon con la senal real,
lo que justifica la necesidad de un filtro. Al principio, en
z = 0 no hay calor; conforme pasa el tiempo, el calor
fluye desde el centro hacia z = 0, asi que la temperatura
en T 0 aumenta. Luego, el calor también se disipa
hacia afuera (por las condiciones de frontera), como no
hay fuente continua de calor, toda la energia en el sistema

2 égsminuye.
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0.06 : - : - : :
Temp. real x=0

desempeno del filtro de Kalman para estimar la distribu-
cién de temperatura en la barra a partir de observaciones
ruidosas. Las Fig. 6 y 7 muestran como se comporta la
temperatura real en la posicion z = 0.25 y en el centro
de la barra con la adicién de ruido. Aunque el modelo
no incluye observaciones directas en estas posiciones, se
grafican para analizar cémo el filtro de Kalman logra
estimar correctamente en zonas no observadas.

., v, +  Observaciones ruidosas

o
o
ra

Temperatura

-0.02

0.2 : - : - T T
Temp. real x=0.25

-0.04

0 005 01 015 02 025 03 035 04 045 05 et
Tiempo

+ Observaciones ruidosas

Figura 3. Representacion de la temperatura en el extremo
de la barra con ruido.

La implementacion del filtro de Kalman permitié recons-
truir eficazmente la temperatura interna de la barra usan-
do solo observaciones ruidosas en un punto. La estimacién
es visualmente cercana a la distribucién real, lo cual indica
un seguimiento efectivo de la dindmica del sistema con
observaciones parciales, ver Fig. 4.

Temperatura

-0.05

0 005 01 015 02 025 03 035 04 045 05

Tiempo
1 = . . . .
- Figura 6. Representacion de la temperatura en la posicién

® o6 de la barra: x = 0.25 con ruido.

g o

o

@

(=8

E

&

Temp. real x=0.5
% *  Observaciones ruidosas

Tiempo e

Figura 4. Representacién de la estimacion de Kalman de
la temperatura real.

o
m

En la Fig. 5, se observa que la estimacion de Kalman
sigue de manera bastante precisa la evolucién real de la
temperatura en el extremo de la barra, suavizando el ruido
y compensando la falta de informacién directa.

Temperatura
o
¥ N

02 |
0.04 TE— : :
— Temp. real x=0
Estimacion Kalman 0 ; | A Pl L]
0.03} 0 005 01 015 02 025 03 035 04 045 05
Tiempo
o . . . e
5 002 Figura 7. Representacion de la temperatura en la posicién
o .
g5 de la barra: z = 0.5 con ruido.
E
8 001

Las Fig. 8 y 9 muestran las salidas del filtro de Kalman

en las posiciones (z = 0.25 y z = 0.5), a pesar de que

solo se midié en x = 0. El resultado indica que el filtro

es capaz de inferir la dindmica térmica interna de la barra

Figura 5. Estimacién de Kalman de la temperatura real — usando Unicamente informacién parcial y ruidosa. La senal

en = 0. estimada es suave y coincide bastante bien con lo que

se esperaria de la evolucién térmica. Se observa cémo el

Posteriormente, se tomaron dos posiciones de la barra, filtro atenta las perturbaciones del ruido y reconstruye
diferentes a las de sus extremos, para verificar el correcto odhia senal fisicamente aceptable.

0 005 01 015 02 025 03 035 04 045 05
Tiempo
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- Temp. real x=0.25
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Figura 8. Estimacion de Kalman de la temperatura real

en z = 0.25.
1.2 .

Temp. real x=0.5
Estimacion Kalman

0.8

086

Temperatura

04r

0.2f

02 025 03 035 04 045 05
Tiempo

0 ) . .
0 005 01 015

Figura 9. Estimacion de Kalman de la temperatura real
en z = 0.5.

Estos resultados demuestran la correcta implementacién
y funcionamiento del filtro de Kalman y que este tiene la
capacidad de reconstruir estados internos no observados,
basandose Unicamente en observaciones en el extremo.

4.1 Comparacion con minimos cuadrados (LS) y minimos
cuadrados recursivos (RLS)

Se realizé una comparacién cuantitativa entre el filtro de
Kalman, el estimador por LS y el estimador RLS, con el
objetivo de evaluar la precision en la estimacién del campo
de temperatura bajo condiciones de observabilidad parcial.
En todos los métodos se utilizd tinicamente la observacion
ruidosa correspondiente al nodo en x = 0, es decir, solo
una componente del estado se encontraba directamente
medida. La implementacién del método LS consistié en
resolver, en cada paso de tiempo t;, un problema de
regresion lineal con una sola observacién, proyectando
el vector de estado sobre la direccion de la matriz de
observaciéon H, mediante la férmula cerrada:

alty) = (HH)" H yo(t;), (11)
donde H es un vector fila que contiene un tnico 1 en
la primera posicién, correspondiente a la observacién en
x = 0, y ceros en las demds entradas, y yo(t;) es la
observacion ruidosa en dicho punto. Por su parte, el
estimador RLS fue implementado de forma adaptativa,

matriz de covarianza Py de gran incertidumbre. En cada
paso de tiempo, se actualizo el estado usando una ganancia
adaptativa basada en la observacién yo(t;), sin incorporar
ningin modelo dindmico del sistema, tal como se establece
en la formulacién estdndar de RLS en Young (2011).

Tomando el factor de olvido igual a 1 en este caso.
0.06 S ;

Temp. observada en x=0

0.05F

0.04 -

0.03 |} 4f

0.02

0.0

Temperatura

-0.01|

-0.02

0.03 . R
0 005 01 015 02 025 03 035 04

Tiempo

Figura 10. Comparacién de la estimacién obtenida entre
el filtro de Kalman, LS y RLS.

Los resultados presentados en la Tabla 1 y en la Fig. 10
muestran que el filtro de Kalman presenta el mejor des-
empeiio global, con el menor RMSE total (= 0.016) y los
mejores valores en cada posicién espacial, especialmente
en regiones no observadas como x = 0.25 y z = 0.5.
Los métodos de minimos cuadrados (LS) y RLS, aunque
ligeramente competitivos en x = 0, donde si se dispone
de observacién directa, fallan en generalizar a posiciones
no observadas. Cabe senalar que, si bien se calcularon
los errores RMSE para LS y RLS en estos puntos, sus
estimaciones en dichas posiciones no estan respaldadas
por informacién observacional directa. Por tanto, los altos
errores obtenidos no reflejan fallas del método, sino las
limitaciones inherentes a su formulacién puramente local.
En contraste, el filtro de Kalman, al incorporar el modelo
fisico de evolucién basado en la ecuacion del calor, logra es-
timaciones razonables en regiones no medidas, con errores

moderados (= 0.018).

Tabla 1. Comparacién de desempeno (RMSE)
y complejidad computacional estimada por

método
Métrica Kalman LS RLS
RMSE total 0.01598 0.08383 0.33178
RMSE en z =0 0.00295 0.01002 0.00932
RMSE en z = 0.25 0.01806 0.06651 0.07161
RMSE en x = 0.5 0.02078 0.14252 0.93007
Operaciones aproximadas | 14,117,000 19,038 7,087,000

Esta comparacion evidencia que, si bien los métodos
basados tunicamente en observaciones pueden funcionar
localmente, su capacidad de generalizacion espacial es muy
limitada, mientras que el filtro de Kalman ofrece una
ventaja significativa al propagar informacion mediante el
modelo dindmico, incluso en condiciones de observabilidad
restringida. En cuanto a la eficiencia computacional, el
filtro de Kalman requiere aproximadamente 14 millones de
operaciones, seguido por RLS (/& 7 millones), mientras que
LS es mucho mds econdémico computacionalmente (=19

iniciando con una estimacion inicial del estado y una 36611), aunque a costa de precisién en la prediccién.
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5. CONCLUSIONES

A partir del desarrollo del presente trabajo enfocado en la
estimacién de estados en un sistema térmico empleando el
filtro de Kalman a partir de medidas parciales, se plantean
los siguientes supuestos:

= El problema inverso de estimar la distribucién de tem-
peratura en una barra a partir de datos ruidosos es
factible y puede resolverse con alta precision usando
la técnica de filtro de Kalman.

= La combinacién de una correcta discretizaciéon del
modelo directo (ecuacién del calor) y una formulacién
probabilistica del problema permite inferir estados no
observables de manera eficiente.

= A pesar de que el filtro de Kalman parte de una esti-
macioén inicial imprecisa, gracias a la incorporacién
sucesiva, de observaciones ruidosas, converge a una
solucién razonable, lo que demuestra su robustez ante
la incertidumbre.

» La comparacién realizada evidencia que el filtro de
Kalman, aunque con mayor costo computacional,
supera significativamente a los métodos de mini-
mos cuadrados (LS) y minimos cuadrados recursivos
(RLS) en términos de precisién y capacidad de infe-
rencia espacial. Mientras que LS y RLS logran estima-
ciones aceptables tinicamente en el punto observado
(x = 0), sus errores aumentan considerablemente en
regiones no medidas, debido a que no incorporan in-
formacién del modelo fisico subyacente. En contraste,
el filtro de Kalman aprovecha el modelo dindmico
de difusién del calor para propagar la informacién y
generar estimaciones consistentes en todo el dominio,
incluso bajo condiciones de observacién limitada, lo
cual lo convierte en una herramienta mas robusta pa-
ra problemas de estimacién de estados parcialmente
observables.
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