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Abstract: This work addresses the dynamic inverse problem of estimating the temperature
distribution in a one-dimensional bar from noisy observations at one of its ends. The model is
based on the heat equation with Neumann boundary conditions, which is discretized spatially
and temporally. A Kalman filter is then implemented to track the thermal evolution of the
system. The results show that, even with partial information and noise, it is possible to efficiently
reconstruct the internal thermal state. This technique is of interest in systems where direct access
to all states is not feasible, as well as in thermal monitoring and real-time control applications.
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1. INTRODUCCIÓN

La conducción de calor es un proceso fundamental de
transferencia de enerǵıa térmica en medios sólidos, ĺıquidos
y gaseosos, y es gobernada por gradientes de temperatura,
tal como se explica en Incropera and DeWitt (1999). Este
fenómeno se encuentra en un amplio rango de aplicaciones,
desde sistemas industriales como hornos, intercambiado-
res de calor y procesos metalúrgicos, hasta dispositivos
biomédicos y electrónicos, donde el control y monitoreo
térmico son cŕıticos para garantizar la seguridad y eficien-
cia de operación.

En ámbitos experimentales o industriales, estimar el gra-
diente de temperatura de un sistema suele requerir la
instalación de múltiples sensores f́ısicos distribuidos espa-
cialmente. Sin embargo, esta aproximación presenta im-
portantes limitaciones: los sensores pueden ser costosos,
invasivos o técnicamente inviables de instalar, especial-
mente en sistemas con geometŕıas complejas y condiciones
extremas. Además, la precisión puede verse comprometida
por el ruido inherente a las mediciones y restricciones
prácticas de colocación.

En el contexto anterior, es común enfrentar la necesidad de
conocer la evolución de la temperatura en regiones donde
no se cuenta con sensores directos. Este tipo de problemas,
conocidos como problemas inversos dinámicos, requieren
reconstruir información interna del sistema a partir de
observaciones parciales, a menudo ruidosas, ubicadas en
la frontera del dominio f́ısico tal como se describe en Bai
et al. (2020). La solución precisa y robusta de estos pro-
blemas resulta esencial para tareas de control automático,
monitoreo en tiempo real y diagnóstico predictivo.

⋆ Este trabajo fue realizado gracias a los programas UNAM-
DGAPA-PAPIME PE100725 y UNAM-DGAPA-PAPIIT IT1000724.

Ante estas dificultades, surgen enfoques alternativos como
los sensores virtuales y las técnicas de estimación de es-
tados. Estos métodos permiten inferir el comportamiento
interno del sistema a partir de modelos f́ısicos y un número
limitado de observaciones externas. Su implementación
ha cobrado creciente relevancia en entornos didácticos y
académicos, ya que permite ilustrar conceptos de mode-
lado, simulación y control de sistemas distribuidos sin
requerir instrumentación extensa, a la vez que favorece
la comprensión de fenómenos complejos mediante herra-
mientas computacionales accesibles.

Particularmente, la ecuación del calor, una ecuación en
derivadas parciales (EDP) que describe la distribución
de temperatura en medios continuos, ofrece un marco
natural para modelar estos sistemas. Sin embargo, resolver
el problema inverso asociado a dicha ecuación plantea retos
significativos debido a su carácter mal condicionado y a la
amplificación del ruido cuando se infiere la solución desde
observaciones limitadas como propone Ivanchov et al.
(2008).

Una estrategia eficaz para abordar este tipo de inferencia
es el uso del filtro de Kalman, un algoritmo recursivo de
estimación de estados que combina información a priori
del modelo con observaciones ruidosas para generar esti-
maciones óptimas como describe Kalman (1960). Aunque
originalmente fue desarrollado para sistemas lineales de
dimensión finita, el filtro de Kalman ha sido extendido
y aplicado exitosamente a sistemas dinámicos distribuidos
gobernados por EDPs, mediante técnicas de discretización
espacial y temporal que convierten el problema en uno de
dimensión finita según González et al. (2015).

1.1 Estado del Arte

La estimación de estados en sistemas distribuidos ha si-
do ampliamente abordada en la literatura. Libros como
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“Numerical Solution of Partial Differential Equations” en
Morton and Mayers (2005) ofrecen fundamentos para la
discretización y el análisis numérico de ecuaciones en de-
rivadas parciales, esenciales para aplicar técnicas de esti-
mación. Por su parte, en el libro ”Optimal State Estima-
tion”de Simon (2006) se presenta una revisión exhaustiva
de variantes del filtro de Kalman, incluyendo el extendido
y el adaptativo, en sistemas dinámicos. En Banks and
Kunisch (1989) a través del libro .Estimation Techniques
for Distributed Parameter Systems”, se formalizaron los
métodos de estimación para sistemas con parámetros dis-
tribuidos, proporcionando bases teóricas para su imple-
mentación en EDPs.

En los últimos años, estudios como el de Qi et al. (2019)
en “Real-time reconstruction of the time-dependent heat
flux and temperature distribution in participating media
by using the Kalman filtering technique” han demostrado
la aplicación del filtro de Kalman en problemas de trans-
ferencia de calor, validando su uso en contextos con ruido
en los datos.

En este trabajo se aborda el problema de estimar la
distribución de temperatura en una barra unidimensional
a partir de observaciones ruidosas realizadas únicamente
en uno de sus extremos. Para ello, se plantea un modelo
directo basado en la ecuación del calor con condiciones de
frontera de Neumann y se implementa un filtro de Kalman
sobre una discretización espacio-temporal del sistema. El
objetivo es evaluar la capacidad del filtro para reconstruir
la evolución térmica interna del sistema a pesar de contar
con información incompleta y contaminada por ruido.
Este enfoque es relevante no solo desde el punto de vista
académico, sino también por su aplicabilidad directa en
sistemas donde no es posible la implementación de la
instrumentación completa.

2. MARCO TEÓRICO

2.1 Ecuación de calor

La ecuación de calor (1) descrita en Mart́ınez (2021) y
Haberman (2012) es una ecuación en derivadas parciales
de segundo orden que describe cómo vaŕıa la temperatura
T (x, t) en un medio dado a lo largo del tiempo t y el espacio
x. La forma unidimensional de la ecuación de calor en un
medio homogéneo e isótropo se expresa como:

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
, (1)

donde ∂u(x, t)/∂t es la tasa de cambio de la temperatura
con respecto al tiempo. α es la difusividad térmica del
material, una constante positiva que depende del material.
∂2u(x, t)/∂x2 es la segunda derivada de la temperatura con
respecto a la posición, que representa la curvatura de la
distribución de temperatura en el espacio.

La ecuación del calor considerada ha sido formulada en
variables adimensionales, es decir, tanto x, t, como u(x, t)
han sido escalados mediante constantes caracteŕısticas
del sistema f́ısico. Esto permite una representación más
general del fenómeno, y por ello, las gráficas presentadas
no indican unidades f́ısicas expĺıcitas.

2.2 Filtro de Kalman

El algoritmo de filtro de Kalman consta de tres fases, a
priori (predicción), cálculo de la ganancia de Kalman y a
posteriori (corrección). Dentro de estas fases está el vector
de estado, el cual contiene las variables que deseamos
filtrar a través del algoritmo de Kalman. En cambio,
el vector de medición es la agrupación de las variables
medidas disponibles y, en el caso particular, las estimadas.
La estimación a priori se realiza con base en el modelo
dinámico del sistema, tomando en cuenta la estimación del
instante anterior sin tomar en cuenta la información del
vector de medición como describe Castro-Toscano et al.
(2018). En la Fig. 1 se muestra cómo cada componente
del filtro de Kalman interactúa para proporcionar una
estimación precisa del estado del sistema en cuestión.

Figura 1. Diagrama de bloques del filtro de Kalman reali-
mentado. Tomada de Castro-Toscano et al. (2018).

3. METODOLOGÍA

3.1 Discretización del modelo

Se consideró una barra conductora de calor de longitud
unitaria: x ∈ [0, 1]. La temperatura de la barra se denota
por u = u(x, t). La distribución inicial de temperatura de
la barra se denota por u(x, 0) = u0(x).

El modelo directo para la evolución temporal está descrito
por la ecuación del calor (1) con condiciones de frontera
de Neumann homogéneas descritas por

∂u(0, t)

∂x
=

∂u(1, t)

∂x
= 0, (2)

que imponen que no existe flujo térmico a través de
los extremos, es decir, los extremos de la barra están
térmicamente aislados para analizar la redistribución del
calor sin pérdida energética por los bordes como espećıfica
LeVeque (2007). Se asumió que la constante de difusividad
térmica del material es igual a 1. La condición inicial se
definió como un pulso gaussiano centrado en x = 0.5, esto
es:

u(x, t) = exp(−100(x− 0.5)2). (3)

A pesar de que el filtro de Kalman se pod́ıa aplicar a este
modelo en tiempo continuo, se decidió trabajar en tiempo
discreto para disminuir el costo computacional en el caso
de que se quisiera implementar el algoritmo en un FPGA
o algún microprocesador.

Para ello la ecuación de calor (1) fue discretizada, divi-
diendo el intervalo [0, 1] en n subintervalos equiespaciados
de longitud ∆x = 1/n. Los puntos de la malla espacial se
definieron como xj = j/n, donde j ∈ Z y j ∈ {0, 1, . . . , n}.
La función u(x, t) evaluada en estos puntos se denota como
uj(t) = u(xj , t).
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Se utilizó un esquema de diferencias finitas centradas de
segundo orden para aproximar la segunda derivada espa-
cial ∂2u(x, t)/∂x2, como se describe en LeVeque (2007) y
Smith (1985). La aproximación obtenida es la siguiente:

∂2u(x j, t)

∂x2
≈ n2

(
uj−1(t)− 2uj(t) + uj+1(t)

)
, (4)

para todo j ∈ {1, 2, . . . , n− 1} ⊂ Z.

Las condiciones de frontera se aproximan mediante:

u1(t) = u0(t), un−1(t) = un(t), (5)

lo cual equivale a suponer condiciones de simetŕıa en
los extremos del dominio. Bajo esta aproximación, es
posible eliminar las temperaturas en los nodos de frontera
y formular una ecuación de evolución semi-discretizada
que describe la dinámica de la temperatura en los nodos
interiores como:

du(t)

dt
= Lu(t), (6)

donde u(t) ∈ Rn−1 representa el vector de temperaturas
en los puntos interiores:

u(t) =


u1(t)
u2(t)
...

un−1(t)

 , (7)

y la matriz L ∈ R(n−1)×(n−1) está dada por:

L = n2


−1 1
1 −2 1

. . .
. . .

. . .
1 −2 1

1 −1

 . (8)

3.2 Filtro de Kalman

Para estimar la evolución del estado del sistema, se empleó
un modelo de evolución basado en el esquema de Euler
hacia adelante, aplicado a la ecuación de calor previamente
discretizada en el espacio. Este modelo permite calcular el
estado del sistema en el siguiente instante de tiempo tj+1,
dado el estado actual en tj , mediante la siguiente ecuación:

u(tj+1) = u(tj) + ∆tLu(tj) + νj+1, (9)

donde u(tj) ∈ Rn−1 es el vector de temperaturas en los

nodos interiores en el tiempo tj , L ∈ R(n−1)×(n−1) es la
matriz Laplaciana obtenida por discretización espacial, ∆t
es el paso temporal, νj+1 ∼ N (0, Q) representa el ruido del

modelo, con Q ∈ R(n−1)×(n−1) la matriz de covarianza del
proceso, que modela la incertidumbre asociada a errores
numéricos o a la dinámica no modelada.

El modelo de observación se formuló como una función
lineal del estado más un término de ruido gaussiano. De
acuerdo con Law et al. (2015), la ecuación de observación
es:

yj = Hu(tj) + ej , (10)

donde yj ∈ R es la observación realizada en el tiempo tj ,

H ∈ R1×(n−1) es una matriz que extrae la componente
correspondiente a la temperatura cercana al extremo iz-
quierdo de la barra (es decir, la primera entrada de u(tj)),
ej ∼ N (0, R) es el ruido de medición, con R = σ2 ∈ R
representando su varianza.

El objetivo es estimar el vector de estado u(tj), es decir,
la distribución de temperaturas en los nodos interiores de
la barra, a partir de observaciones ruidosas en un punto
fijo. Este problema puede considerarse como un problema
inverso, en el cual se desea reconstruir el estado completo
del sistema a partir de mediciones parciales. En este caso,
se supone que las observaciones de temperatura se realizan
en tiempos discretos tj = j∆t, únicamente en un extremo
de la barra (posición x = 0).

4. RESULTADOS Y DISCUSIÓN

Para validar la implementación del filtro de Kalman, se
discretizó el dominio espacial en n = 20 nodos interiores y
se utilizó el esquema expĺıcito de Euler para la evolución
temporal. Los datos de observación fueron generados de
forma sintética añadiendo perturbaciones gaussianas de
media cero y varianza σ2 = 0.01 a los valores de tempera-
tura simulados en el nodo correspondiente a x = 0. Esta
estrategia permite evaluar el desempeño del estimador en
condiciones controladas, considerando tanto la evolución
del modelo como la presencia de ruido de medición.

La evolución real de la temperatura en el centro de la
barra (x ≈ 0.5) se muestra en la Fig. 2, esta mostró un
difuminado progresivo de la distribución inicial, tal como
se espera del comportamiento disipativo de la ecuación del
calor. Inicialmente el calor está concentrado en el centro
de la barra, como no hay una fuente constante de calor en
el dominio, este se difunde hacia los extremos (x = 0 y
x = 1) con el tiempo.

Figura 2. Representación del comportamiento de la tem-
peratura a lo largo de la barra.

En la Fig. 3 se muestran las observaciones ruidosas gene-
radas en el extremo de la barra: x = 0; estas mostraron
una alta variabilidad en comparación con la señal real,
lo que justifica la necesidad de un filtro. Al principio, en
x = 0 no hay calor; conforme pasa el tiempo, el calor
fluye desde el centro hacia x = 0, aśı que la temperatura
en x = 0 aumenta. Luego, el calor también se disipa
hacia afuera (por las condiciones de frontera), como no
hay fuente continua de calor, toda la enerǵıa en el sistema
disminuye.
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Figura 3. Representación de la temperatura en el extremo
de la barra con ruido.

La implementación del filtro de Kalman permitió recons-
truir eficazmente la temperatura interna de la barra usan-
do solo observaciones ruidosas en un punto. La estimación
es visualmente cercana a la distribución real, lo cual indica
un seguimiento efectivo de la dinámica del sistema con
observaciones parciales, ver Fig. 4.

Figura 4. Representación de la estimación de Kalman de
la temperatura real.

En la Fig. 5, se observa que la estimación de Kalman
sigue de manera bastante precisa la evolución real de la
temperatura en el extremo de la barra, suavizando el ruido
y compensando la falta de información directa.

Figura 5. Estimación de Kalman de la temperatura real
en x = 0.

Posteriormente, se tomaron dos posiciones de la barra,
diferentes a las de sus extremos, para verificar el correcto

desempeño del filtro de Kalman para estimar la distribu-
ción de temperatura en la barra a partir de observaciones
ruidosas. Las Fig. 6 y 7 muestran cómo se comporta la
temperatura real en la posición x = 0.25 y en el centro
de la barra con la adición de ruido. Aunque el modelo
no incluye observaciones directas en estas posiciones, se
grafican para analizar cómo el filtro de Kalman logra
estimar correctamente en zonas no observadas.

Figura 6. Representación de la temperatura en la posición
de la barra: x = 0.25 con ruido.

Figura 7. Representación de la temperatura en la posición
de la barra: x = 0.5 con ruido.

Las Fig. 8 y 9 muestran las salidas del filtro de Kalman
en las posiciones (x = 0.25 y x = 0.5), a pesar de que
solo se midió en x = 0. El resultado indica que el filtro
es capaz de inferir la dinámica térmica interna de la barra
usando únicamente información parcial y ruidosa. La señal
estimada es suave y coincide bastante bien con lo que
se esperaŕıa de la evolución térmica. Se observa cómo el
filtro atenúa las perturbaciones del ruido y reconstruye
una señal f́ısicamente aceptable.
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Figura 8. Estimación de Kalman de la temperatura real
en x = 0.25.

Figura 9. Estimación de Kalman de la temperatura real
en x = 0.5.

Estos resultados demuestran la correcta implementación
y funcionamiento del filtro de Kalman y que este tiene la
capacidad de reconstruir estados internos no observados,
basándose únicamente en observaciones en el extremo.

4.1 Comparación con mı́nimos cuadrados (LS) y mı́nimos
cuadrados recursivos (RLS)

Se realizó una comparación cuantitativa entre el filtro de
Kalman, el estimador por LS y el estimador RLS, con el
objetivo de evaluar la precisión en la estimación del campo
de temperatura bajo condiciones de observabilidad parcial.
En todos los métodos se utilizó únicamente la observación
ruidosa correspondiente al nodo en x = 0, es decir, solo
una componente del estado se encontraba directamente
medida. La implementación del método LS consistió en
resolver, en cada paso de tiempo tj , un problema de
regresión lineal con una sola observación, proyectando
el vector de estado sobre la dirección de la matriz de
observación H, mediante la fórmula cerrada:

û(tj) = (H⊤H)−1H⊤y0(tj), (11)

donde H es un vector fila que contiene un único 1 en
la primera posición, correspondiente a la observación en
x = 0, y ceros en las demás entradas, y y0(tj) es la
observación ruidosa en dicho punto. Por su parte, el
estimador RLS fue implementado de forma adaptativa,
iniciando con una estimación inicial del estado y una

matriz de covarianza P0 de gran incertidumbre. En cada
paso de tiempo, se actualizó el estado usando una ganancia
adaptativa basada en la observación y0(tj), sin incorporar
ningún modelo dinámico del sistema, tal como se establece
en la formulación estándar de RLS en Young (2011).
Tomando el factor de olvido igual a 1 en este caso.

Figura 10. Comparación de la estimación obtenida entre
el filtro de Kalman, LS y RLS.

Los resultados presentados en la Tabla 1 y en la Fig. 10
muestran que el filtro de Kalman presenta el mejor des-
empeño global, con el menor RMSE total (≈ 0.016) y los
mejores valores en cada posición espacial, especialmente
en regiones no observadas como x = 0.25 y x = 0.5.
Los métodos de mı́nimos cuadrados (LS) y RLS, aunque
ligeramente competitivos en x = 0, donde śı se dispone
de observación directa, fallan en generalizar a posiciones
no observadas. Cabe señalar que, si bien se calcularon
los errores RMSE para LS y RLS en estos puntos, sus
estimaciones en dichas posiciones no están respaldadas
por información observacional directa. Por tanto, los altos
errores obtenidos no reflejan fallas del método, sino las
limitaciones inherentes a su formulación puramente local.
En contraste, el filtro de Kalman, al incorporar el modelo
f́ısico de evolución basado en la ecuación del calor, logra es-
timaciones razonables en regiones no medidas, con errores
moderados (≈ 0.018).

Tabla 1. Comparación de desempeño (RMSE)
y complejidad computacional estimada por

método

Métrica Kalman LS RLS

RMSE total 0.01598 0.08383 0.33178

RMSE en x = 0 0.00295 0.01002 0.00932
RMSE en x = 0.25 0.01806 0.06651 0.07161
RMSE en x = 0.5 0.02078 0.14252 0.93007

Operaciones aproximadas 14,117,000 19,038 7,087,000

Esta comparación evidencia que, si bien los métodos
basados únicamente en observaciones pueden funcionar
localmente, su capacidad de generalización espacial es muy
limitada, mientras que el filtro de Kalman ofrece una
ventaja significativa al propagar información mediante el
modelo dinámico, incluso en condiciones de observabilidad
restringida. En cuanto a la eficiencia computacional, el
filtro de Kalman requiere aproximadamente 14 millones de
operaciones, seguido por RLS (≈ 7 millones), mientras que
LS es mucho más económico computacionalmente (≈19
mil), aunque a costa de precisión en la predicción.
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5. CONCLUSIONES

A partir del desarrollo del presente trabajo enfocado en la
estimación de estados en un sistema térmico empleando el
filtro de Kalman a partir de medidas parciales, se plantean
los siguientes supuestos:

El problema inverso de estimar la distribución de tem-
peratura en una barra a partir de datos ruidosos es
factible y puede resolverse con alta precisión usando
la técnica de filtro de Kalman.
La combinación de una correcta discretización del
modelo directo (ecuación del calor) y una formulación
probabiĺıstica del problema permite inferir estados no
observables de manera eficiente.
A pesar de que el filtro de Kalman parte de una esti-
mación inicial imprecisa, gracias a la incorporación
sucesiva de observaciones ruidosas, converge a una
solución razonable, lo que demuestra su robustez ante
la incertidumbre.
La comparación realizada evidencia que el filtro de
Kalman, aunque con mayor costo computacional,
supera significativamente a los métodos de mı́ni-
mos cuadrados (LS) y mı́nimos cuadrados recursivos
(RLS) en términos de precisión y capacidad de infe-
rencia espacial. Mientras que LS y RLS logran estima-
ciones aceptables únicamente en el punto observado
(x = 0), sus errores aumentan considerablemente en
regiones no medidas, debido a que no incorporan in-
formación del modelo f́ısico subyacente. En contraste,
el filtro de Kalman aprovecha el modelo dinámico
de difusión del calor para propagar la información y
generar estimaciones consistentes en todo el dominio,
incluso bajo condiciones de observación limitada, lo
cual lo convierte en una herramienta más robusta pa-
ra problemas de estimación de estados parcialmente
observables.
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Informática industrial, 15(4), 391–403.
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