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Abstract: This work addresses the synchronization of chaotic Hamiltonian mechanical systems
via an energy shaping-based control methodology within a master-slave configuration. The
proposed control scheme ensures global exponential stability (GES) of the state-space origin of
the closed-loop system. Specifically, two representative chaotic systems—the Hénon—Heiles
system and the double pendulum—are employed as two examples for illustration. The
effectiveness of the control laws is demonstrated through numerical simulations.
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1. INTRODUCCION

La palabra caos habitualmente refiere a lo impredecible,
a la falta de orden o al desconcierto. Si bien se utiliza
en muchos aspectos de la vida, en fisica e ingenieria se
emplea para describir el comportamiento de cierta clase
de sistemas dindmicos modelados mediante ecuaciones
diferenciales. A lo largo de los anos se ha documentado
comportamiento cadtico en sistemas estudiados en cam-
pos tan variados como la geologia (Danos (1998)), la
astronomia (Zeebe and Lourens (2019)), la dindmica de
fluidos (Yorke and Yorke (2005)) y la medicina (West
(2012)), entre muchos otros. Entre los trabajos pioneros
en documentar sistemas cadticos se encuentra el presen-
tado en Lorenz (1963), donde, en la biisqueda de un mod-
elo matematico que predijera el comportamiento aleatorio
del clima, el autor descubrié lo que se conoce como un
atractor extrano (Grassberger and Procaccia (1983)), el
cual se caracteriza por la evolucién de las trayectorias
del sistema, representando un comportamiento aparente-
mente aleatorio e irreqular. Aunque el fenémeno del caos
ha sido ampliamente estudiado, a la fecha no existe una
definicién universalmente aceptada sobre lo que repre-
senta el caos en un sistema dindmico. Sin embargo, en
general se considera que un sistema dindmico es cadtico
si presenta una alta sensibilidad a las condiciones iniciales
(Devaney (1989)).

Por otro lado, en las tltimas décadas, la sincronizacién
de sistemas caoticos ha emergido como una linea de in-
vestigacién propia, la cual se encuentra en auge debido
a sus aplicaciones potenciales en &reas como el proce-

samiento de informacién (Xie et al. (2002)), redes y
transmisién de datos (Vaseghi et al. (2018)), medicina
(Vaseghi et al. (2021)), robética (Wu et al. (2022)), en-
tre muchas otras. La sincronizacion de sistemas cadticos
se define como el proceso mediante el cual dos o mas
sistemas cadticos—sean equivalentes o no—ajustan una
propiedad especifica de su dindmica para exhibir un com-
portamiento comun, como resultado de una senal de con-
trol externa (Boccaletti et al. (2002)). Matematicamente,
la sincronizacién puede plantearse de diversas formas,
tales como: la sincronizacién idéntica, donde se busca
que los estados de un sistema cadtico sigan a los del
otro; la antisincronizacién, donde se desea una rotacién
o inversién de los estados de un sistema respecto al otro;
y la sincronizacién parcial, donde solo ciertas variables o
componentes siguen al sistema de referencia, entre muchas
otras variantes (Boccaletti et al. (2002)). Si bien este
problema ha sido abordado desde distintos enfoques de
control, como el backstepping (Tan et al. (2003)), los mo-
dos deslizantes (Yan et al. (2006)), entre otros, es intere-
sante notar que, aunque existen sistemas en formulacién
hamiltoniana que presentan caos, son pocos los trabajos
que abordan el problema de sincronizacién de este tipo
de sistemas mediante técnicas por moldeo de energia, un
enfoque particularmente adecuado para sistemas en dicha
formulacion.

La principal contribucién de este trabajo es la solucién al
problema de sincronizacion de sistemas mecanicos hamil-
tonianos cadticos mediante una metodologia por moldeo
de energia mas inyecciéon de amortiguamiento, original-
mente presentada en (Kelly et al. (2021)). La ley de
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control propuesta garantiza el cumplimiento del objetivo
de sincronizacion idéntica y, ademads, permite obtener un
verdadero sistema hamiltoniano en lazo cerrado, el cual
tiene el potencial de cumplir distintos objetivos de control
(Sandoval et al. (2022)), lo que abre la posibilidad de ex-
tender la propuesta hacia nuevos objetivos bajo enfoques
como robustez ante perturbaciones externas e incertidum-
bres paramétricas, regulaciéon de energia, entre otros. Lo
anterior destaca frente a las técnicas de sincronizacion
clasicas, en las cuales el sistema en lazo cerrado resul-
tante no tiene una estructura bien definida (Boccaletti
et al. (2002)) y se limita al cumplimiento del objetivo
de sincronizacién. El andlisis de estabilidad del sistema
en lazo cerrado, junto con simulaciones numéricas, ilustra
el desempeno del controlador propuesto aplicado a dos
sistemas cadticos: el sistema Hénon—Heiles y el péndulo
doble.

El resto del articulo esta organizado de la siguiente man-
era. En la seccién 2 se presenta un breve resumen de
la metodologia por moldeo de energia mas inyecciéon de
amortiguamiento. En la seccién 3 se presenta la formu-
lacién del problema de control y la propuesta principal del
controlador, asi como el anélisis detallado de estabilidad
del sistema en lazo cerrado propuesto. Los resultados de
simulaciéon se presenta en la seccién 4. Finalmente, las
conclusiones se presentan en la seccién 5.

A lo largo del documento, se usara la notacién Apin{A} y
Amax{A} para indicar el valor propio minimo y méximo,
respectivamente, de una matriz simétrica definida pos-
itiva acotada A(z), para cada * € R™ (denotada por
A > 0). La norma euclidiana de un vector = se de-
fine como ||z = (x"x)'/?, y para una matriz A, se
define como la norma inducida correspondiente: || A| =
(Amax{AT A2, También, (-)pxn denota una matriz de
dimensiones n x n, con I, «, como la matriz identidad y
0,,xn como una matriz de ceros. Por otro lado, 0, € R"
representa un vector columna de ceros de dimension n x 1,
Vi =(09/0()), y diag{ai,as,...,a,} denota una matriz
diagonal de dimensién n xn, cuyos n elementos diagonales
son ap,a2,...,0y.

2. UN ENFOQUE POR MOLDEO DE ENERGIA MAS
INYECCION DE AMORTIGUAMIENTO DE
SISTEMAS MECANICOS: UN BREVE RESUMEN

Se presenta una breve revisién del método por moldeo
de energia con inyecciéon de amortiguamiento, introducido
originalmente en (Kelly et al. (2021)) para sistemas
mecanicos no cadticos. Lo novedoso de este enfoque, en
comparacién con otros métodos de moldeo de energia, es
la amplia variedad de objetivos de control que pueden
lograrse con un mismo controlador. Entre ellos se in-
cluyen: regulacién de posicién, seguimiento de trayecto-
rias, regulacién de energia, control de velocidad, rechazo a
perturbaciones de par, y, como se abordara mas adelante,
la sincronizacion de sistemas cadticos.

Copyright® AMCA, ISSN: 2594-2492

2.1 Modelo dindmico

La formulacién hamiltoniana de un sistema mecéanico con
n grados de libertad inicia con la definicién de la funcién
H(q,p), la cual se obtiene como la suma de las energias
cinética y potencial del sistema, y se expresa como

H(a,p) = 59" M(a) ' +Ula), (1)

donde g € R”™ representa el vector de posiciones general-
izadas, p € R™ es el vector de momentos generalizados,
M(q) = M(q)T > 0 es la matriz de inercia (simétrica
definida positiva), y U(q) es la funcién de energia poten-
cial, asumida al menos una vez diferenciable con respecto
a q. Adicionalmente, la representacién candnica de la
formulaciéon hamiltoniana incluye:

p = M(q)q, (2)
donde q corresponde al vector de velocidades.

Considerando (1) y (2), el modelo dindmico de un sistema
mecénico sin friccién con n articulaciones se describe
mediante:

i q — OnX"L I?'LX'IL qu(q7p) + Onxm u (3)

dt |P —Inxn Onxn VpH(qvp) G(q) ’
donde G € R™ ™ es la matriz de distribucién de actu-
adores, con rango{G} = m y m < n, siendo m el nimero
de entradas de control y n el niimero de grados de libertad

del sistema. Finalmente, u € R™ representa el vector de
senales de control.

2.2 Metodologia de control

Para presentar la metodologia de control seleccionada,
es conveniente introducir primero algunas definiciones.
Inspirado en (1) y (2), se define la siguiente funcién
escalar:

1 _
§pzMa(qa) lpa +ua(Qa)7 (4)

denominada hamiltoniano deseado, donde M,(q,) : R" —
R™*™ es una funcién matricial simétrica, definida positiva
y diferenciable para todo q, € R", y U,(q,) es una funcién
continua, diferenciable y definida positiva, con un minimo
aislado en g = 0,,, que ademds es un punto critico de
U (gs). Se introduce a continuacién el siguiente cambio
de coordenadas:

Ha(‘]aapa) =

4. = a(q) — ¢(1), (5)

Do = Ma(‘]a)qav (6)

siendo q, € R" y p, € R” los vectores de nuevas

posiciones generalizadas y momentos, donde a(q) y ¢(t)
tienen la siguiente estructura:

a(q) = [a1(q) as(q) -+ an(q)]”, (7)
o(t) = [p1(t) G2(t) -+ a(t)], 8)

donde «;(q) es una funcién continuamente diferenciable
respecto a q, para ¢ = 1,...,n, la cual debe elegirse de
manera que se garantice rango{W(q)} = n para todo
g € R, de modo que W(q)~! exista, siendo W(q)
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la matriz Jacobiana de a(q), es decir, W(q) = a'gflq).

Ademds, se asume que ¢;(t) es una funcién dos veces
diferenciable. De (5) se deduce que:

4o =W(q)q — &(t). (9)
Sustituyendo ¢, de (9) en (6), y usando ¢ = M(q) " 'p de
(2), se obtiene:

Pa = Ta(qaa q)p - Ma(qa)(b(t)? (10)
donde

Ta(qaaq) = Ma(qa)W(q>M(q)_17 (11)
y se cumple que rango{T,(q,,q)} = n. Por lo tanto, el
sistema en lazo cerrado deseado se define como:

i qa — O'V’LXTL InX"L vanCL

dt |Pa _Inxn _Da VpaHa ’
donde D,(gq, Pa) € R™™ ™ es la matriz de inyeccion de
amortiguamiento, que se definird més adelante.

(12)

3. SINCRONIZACION DE SISTEMAS
HAMILTONIANOS CAOTICOS MEDIANTE
MOLDEO DE ENERGIA

En esta seccién se presenta la propuesta principal para
garantizar la sincronizacién de dos sistemas mecédnicos
cadticos. Con este fin, se introducen inicialmente las
diferencias principales entre la metodologia original y la
propuesta desarrollada en este trabajo.

3.1 Caos en sistemas hamiltonianos

En esencia, y como se explicé en la Introduccién, un
sistema mecédnico de la forma (3) puede considerarse
cadtico si presenta alta sensibilidad a las condiciones
iniciales. Esta caracteristica puede cuantificarse medi-
ante una propiedad de los sistemas dindmicos conocida
como el exponente de Lyapunov (véase Barreira (2017)).
Esta magnitud se define y calcula mediante la siguiente
relacién:

16 ~ e[l (13)
donde 4(t) representa la separacién entre dos trayectorias
de un mismo sistema bajo condiciones iniciales cercanas,
dy representa la separacién inicial entre las trayectorias,
y A es el exponente de Lyapunov. La clase de sistemas
mecanicos considerada en este trabajo se modela median-
te (3), con G = I, y un A positivo.

3.2 Sistema maestro-esclavo

Existen diferentes enfoques para abordar la sincronizacién
de sistemas cadticos, como la sincronizacién parcial, en
cascada e hipercaética, entre otras (véase Pecora et al.
(1997) para una explicacién detallada de cada una de
ellas). En este trabajo nos enfocamos en verificar la
sincronizacion idéntica de dos sistemas cadticos, la cual
se describe a continuacién.

Considere el sistema cadtico maestro descrito por:

d \qm| _ | Vp, Hm
dt {pm] B {—qu?lm] ’ (14)
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con

1 _
Hm(Qmapm) = §pZ@Mm1<Qm)pm +um<qm)a (15)

donde q,, € R” representa el vector de posiciones gen-
eralizadas del sistema maestro, p,, € R" es el vec-
tor de momentos generalizados p,, = M;,(qm)gm, con
My (gm) = Mp(gn)T > 0 la matriz de inercia del
sistema maestro, y U, (@, ) la funcién de energia potencial
del sistema maestro. Por otro lado, considere el sistema
esclavo descrito por:

d lqs| _ V. Hs
dt [ps] B |:vqus +us} ’ (16)
con )
Hs(Qsaps) = *PSTMs_l(qs)Ps +u8(q5)a (17)

2
donde gs; € R™ representa el vector de posiciones gen-

eralizadas del sistema esclavo, p; € R"™ es el vector de
momentos generalizados ps = M;(gs)gs, con My(gs) =
M,(gs)T > 0 la matriz de inercia del sistema esclavo,
Us(gs) la funcién de energia potencial del sistema es-
clavo, y us € R"™ representa el vector de senales de
control del sistema esclavo. La sincronizacion idéntica
entre los sistemas (14)—(17) se refiere al seguimiento
asintotico del estado g respecto de las trayectorias descri-
tas por las coordenadas q,,. Esta condicién se formulara
matematicamente en la siguiente subseccion. En lo suce-
sivo, nos referiremos a la sincronizacion idéntica simple-
mente como sincronizacion de dos sistemas cadticos.

3.8 Objetivo de control

Formalmente, la sincronizacion entre el sistema maes-
tro (14)—(15) y el sistema esclavo (16)—(17) consiste en
disenar una ley de control us para el sistema esclavo tal
que se cumpla:

Jim q5(t) = g (1), (18)
para cualquier condicién inicial del sistema maestro,
(@m(0), P (0)), y del sistema esclavo, (gs(0),ps(0)).

3.4 Ley de control

A continuacién, se presenta una propuesta de controlador
para el sistema (16)—(17), basada en la metodologia por
moldeo de energia mas inyeccién de amortiguamiento
descrita en la seccién 2, la cual verifica el objetivo de
control dado en (18).

Proposicion 1. Considere el sistema maestro-esclavo des-
crito por las ecuaciones (14)—(17). El sistema en lazo
cerrado (12) es verificado con la siguiente ley de control:

u, =VgHs — T, " | Vg Ha + DaVp, Ha

(19)
+ Tasps - Tampm + Tam qu Hm )
donde
T,. = M,M;*, (20)
T, :=M,M,* (21)
15
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cuyos argumentos qu,qs V¥ ¢ han sido omitidos para
facilidad del lector.

Prueba. Del cambio de coordenadas dado en (5)-(6),
seleccionando q = qs, a(gs) = g5 y reemplazando ¢(t)
por @, se sigue que la derivada temporal de (10) estd
dada por:

a = Tasps + Tasps Tampm - Tam pm (22)
Sustituyendo p, de la segunda fila de (16) y p,, de la
segunda fila de (14) en (22) se obtiene:

pa :Tasps + Tas [*vqsﬂs + us} (23)

- Tam Pm + 11am vqum
Sustituyendo en la ecuacién anterior la ley de control
propuesta en (19), se obtiene:

o =Tu.ps +Th. T, [V Ha + DaVp, Ha

+ Tasps - Tampm + 1y, quHm] (24)
- Tampm + 714, Ve, Hm
= = Vg Ha —DVp, Ha.

Lo anterior prueba el segundo renglén de (12). Por otra
parte, a partir de (4) se tiene que Vpa’}-la = M;p,, y
usando la definicién en (6), se obtiene ¢, = Vpa’H Lo
anterior prueba el primer renglén de (12) lo que concluye
la demostracién de la Proposicion 1.

Comentario 2. La principal diferencia entre la propuesta
presentada en este trabajo y la metodologia de moldeo
de energia descrita en la seccion 2 se evidencia en las
ecuaciones (19)-(21). En ambas propuesta, el objetivo de
control principal es verificar el sistema en lazo cerrado
(12) mediante una ley de control adecuada. Mientras que
en la metodologia original dicha ley involucra tinicamente
los estados de un solo sistema hamiltoniano, en este
trabajo se plantea una ley de control (19) que considera
los estados de dos sistemas hamiltonianos diferentes: el
sistema maestro y el sistema esclavo.

3.5 Andlisis de estabilidad

A continuacién, se presenta un andlisis detallado de la
estabilidad del sistema en lazo cerrado resultante (12).
Con este fin, se introduce la siguiente Proposicién.

Proposicion 3. Considere el sistema maestro-esclavo de-
scrito por las ecuaciones (14)—(17), con la ley de control
dada en (19) que verifica la dindmica del sistema en
lazo cerrado (12). Seleccionando M, = M, como una
matriz diagonal constante definida p081t1va y la funcién
de energia potencial deseada como U, = 5 1qT K pQa, donde

= diag{ds,ds,...,d,} v K, = diag{kp,, kp,, .- -, kp, }
son matrices constantes, deﬁnidas positivas y arbitrarias
y la matriz de inyeccién de amortiguamiento D, = K,,
donde K, = diag{ky,, kuv,, ..., kv, } s una matriz diago-
nal definida positiva, entonces, el objetivo de control de
sincronizacién dado en (18) se verifica.

Copyright® AMCA, ISSN: 2594-2492

Prueba. Utilizando el diseno propuesto en la Proposicién
3, el sistema deseado en lazo cerrado (12) estd dado por:

d {qa| _ M, 'p,
dt |Pa) | —Kpqa — KoM 'p,

donde la funcién de energia deseada (4) puede escribirse
como:

(25)

1 1
Ha §pa M . + 2qa Kan- (26)

Es importante notar que el sistema (25) es auténomo y
su origen, es decir, [an paT]T = 05, constituye su unico
punto de equilibrio. Mds atin, la ley de control (19) estd
dada por:

(I :quHS - Mth;l {qua + K'“Mf;lpa
| (27)
+Tops — T,

Am

P+ Ty Van Mo

donde M,, K, y K, son las ganancias del controlador.
Continuando con el andlisis de estabilidad se propone la
siguiente funcién de Lyapunov para el sistema en lazo

cerrado (25):
1 _ 1
V(T’) = §nga 1pa + §quPQa + €0q, M paa

T .
donde n = [q(f paT} Yy €0 es una constante estrictamente
positiva elegida tal que satisface 0 < ey < €f; donde:

(28)

. .

ey, = min {€g, , €0,, €04 } (29)

con ¢ AV i K P {M, '} — Vmaxc{ K Pmax{ Mg '}
01 = Ao { My 1} 1 €02 = Amax{Mg 1}

v €0, min {M 7 Kp P Amin {M D, M} La

A2 AM; ' Do Mg Y44 min { Mg " Kp Amin {Ms'}"
funcién V es definida positiva y radialmente desacotada
como se demostrard a continuaciéon. Note que el tercer
término de V' cumple la siguiente desigualdad:

€0ds My 'Pa > —€0Amax{M; '} galllPall- (30)
Maés atn, V verifica
1
V(n) > 519TEminﬁ, (31)
donde 9 = [||qq| Hpa||]T siendo:
R mm{Kp} 60)\max{J\4' 1}
Enun - |:_€0)\m4x{M 1} )\mln{M 1} (32)

Dado que K, y M, son matrices definidas positivas y
ey verifica (29), entonces Epn, es una matriz definida
positiva, por lo que de (31) se concluye que V es una
funcién definida positiva y radialmente desacotada. Maés
aun, V también satisface V(n) < lﬁTEmaxﬂ con

E _ de{K} 6O)\ma‘x{]\4 1}
max 6O>\max{z\4- 1} )\max{M 1}

Dado que Amax{Kp} ¥ Amax{M, '} son constantes estric-
tamente positivas y € satisface (29) entonces Epax > 0.
Lo anterior prueba que V es una funcién menguante. La
derivada temporal de V' a lo largo de las trayectorias de
(25) esta dada por:

V=—qleoM ' K,q, — pL | M "D, M — oM
— qu oM, "Dy M pa.

(33)

(34)
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De (34) puede demostrarse que:

V(n) < —eo9” A0, (35)
con la matriz A definida como:
_ [Hn ’4312:| 7 (36)
K12 K22

donde K11 = )\min{M(Zle}a K1o = %Amax{MJIDaMgl}
Y Koo = %Amin{l\z‘:lpaﬂgl} — Amax{ M1}, La matriz
A es definida positiva si €} cumple con (29). Por lo tanto,

V(n) es definida negativa. Como V es definida positiva,

radialmente desacotada y menguante, y V es definida
negativa globalmente entonces el origen de (25) es un
punto de equilibrio globalmente asintéticamente estable.
Ma3és aun, es posible demostrar con algunos argumentos
adicionales e invocando el teorema de estabilidad expo-
nencial para sistemas auténomos Khalil (2002)[Teorema
4.10 pagina 154] que el origen de (25), es decir, n = 0g,
es un punto de equilibrio globalmente exponencialmente
estable. Del cambio de coordenadas (5) se concluye que
do — 0, = gs — @m, lo que verifica (18). Lo anterior
completa la prueba de la Proposicién 3.

4. EJEMPLOS ILUSTRATIVOS

En esta seccion se presenta la aplicacion de la metodologia
propuesta en dos sistemas caoticos: el sistema de Hénon-
Heiles y el péndulo doble sin friccion. Todas las simu-
laciones se realizaron en el software Matlab Simulink,
utilizando el método de integracién ODE23t, con una
tolerancia de error de 1 x 1076,

4.1 Sistema Hénon-Heiles

El sistema de Hénon-Heiles describe el movimiento de una
particula en el plano bajo un potencial no lineal, y fue
investigado originalmente en Shevchenko and Melnikov
(2003). El hamiltoniano (1) del sistema Hénon-Heiles esta
dado por:

1
H= B [P% +P§] +U(q1,92) (37)
donde g1 y g2 son las coordenadas generalizadas, siendo
q1u = Ty g2 = y las coordenadas espaciales de la
particula en el plano, y p1 y p2 sus momentos conjugados,
respectivamente. La funcién de energfa potencial U (g1, ¢2)
esta dada por:

1 1.
U ) = s [dd + @] +7[dee — s8] (38)

2 3
El pardmetro ~ cuantifica la intensidad de la no lineali-
dad en el potencial. Sin pérdida de generalidad, se toma
~ = 1 para simplificar los cdlculos sin alterar la naturaleza
cadtica del sistema. De (37) se deduce que la matriz de
inercia M(q) = M = Iyx2. De acuerdo a Shevchenko
and Melnikov (2003) el sistema tiene un exponente de
Lyapunov (13) positivo. De acuerdo con la Proposicién 3,
se propone la matriz de inercia deseada M, = M, = Is«2,
ademds se seleccionan las matrices K, = diag{k,,, kp,} ¥
K, = diag{k,,, ky, }, donde k,, > 0y k,, >0, i = {1,2},

Copyright® AMCA, ISSN: 2594-2492

g2[m]

Fig. 1. Trayectorias de los sistemas maestro y esclavo
durante la simulacién del sistema Hendén-Heiles.

son constantes positivas. Para la simulacién presentada,
las condiciones iniciales del sistema maestro fueron fi-

T
jadas como @,,(0) = {0.266[1@1] 0.25[m]} y pm(0) =

T
[O.42[kg m/s| O[kg m/s]] , mientras que las condiciones
iniciales del sistema esclavo fueron fijadas como ¢s(0) =

T T
[O[m] O.25[m]} v ps(0) = [0.42[kg m/s] Okg m/sﬂ
Las ganancias del controlador se fijaron como k, =
2,kyp, = 2,ky, =2y ky, = 2. Con la anterior seleccién,
de (29), las constantes €y, = €, = V2 y €9, = 1.33 lo que
garantiza la existencia de un €} = min{eo, , €g,, €0, } > 0.
Cabe mencionar que las ganancias del controlador pro-
puesto (19) fueron seleccionadas cuidadosamente median-
te un ajuste de prueba y error, con el fin de obtener el
mejor desempeno posible. Durante las simulaciones, la
senal de control us de (16) fue activada 5[s] después de
iniciada la simulacién. Lo anterior con el fin de mostrar
la alta sensibilidad a las condiciones iniciales del sistema.
Los resultados de simulacién se muestran en las Figs. 1-3.
La Fig. 1 muestra la evolucién de las trayectorias de la
particula dada por el sistema maestro (azul) y el sistema
esclavo (r0jo). Para el sistema maestro, el eje horizontal
representa la coordenada ¢,,, , mientras que el eje vertical
representa la coordenada g,,. Para el sistema esclavo,
el eje horizontal representa la coordenada ¢, y el eje
vertical, la coordenada ¢s,. Se observa que, aunque las
condiciones iniciales son muy cercanas, las trayectorias
de ambos sistemas divergen de forma exponencial trans-
curridos algunos segundos (lo cual verifica el exponente
de Lyapunov positivo). Mds adn, se aprecia que, una
vez activado el control en t = 5[s], el sistema esclavo se
sincroniza con el sistema maestro en aproximadamente
7[s], es decir, en ¢ = 12[s], y continlda en sincronia
hasta finalizar la simulacién. Finalmente, es importante
remarcar que en las Fig. 2 se aprecia el comportamiento
exponencial garantizado por la Proposicién 3.

4.2 Péndulo doble

En esta seccién se presenta la aplicaciéon del controlador
propuesto (19), utilizando como planta un péndulo doble.
Este sistema exhibe una alta sensibilidad a las condiciones
iniciales —caracteristica de los sistemas cadticos—, como
ha sido estudiado ampliamente en Shinbrot et al. (1992).
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Fig. 2. Comportamiento de la senal q,(t) durante la
simulacion del sistema maestro-esclavo Hénon-Heiles.
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Fig. 3. Comportamiento de la ley control (27) durante la
simulacién del sistema Hénon-Heiles.

Fig. 4. Esquema de un péndulo doble.

En la Fig. 4 se muestra un esquema del péndulo doble
utilizado, donde ¢; y @2 representan las posiciones ar-
ticulares. Este sistema estd compuesto por dos péndulos
simples conectados en serie, donde el segundo cuelga
del extremo del primero. Cada péndulo consiste en una
masa puntual unida a una varilla rigida sin masa, cuya
movilidad esta restringida a un plano vertical. El punto
de suspension del primer péndulo esta fijo, y se asume
que el movimiento es completamente libre de friccion.
Los parametros dindmicos de los dos eslabones son lon-
gitud del eslabén [;, y la masa m;, con i = 1,2. La
aceleracion de la gravedad es g. Los valores nominales de
estos parametros para ambos sistemas utilizados durante
la simulacién fueron Iy = 1.2[m], Iz = 1.6[m], m; = 0.2[kg]
y ma = 0.3[kg]. El modelo dindmico (3) se puede describir
con las matrices:

12(myq + mo) l1lamg cos(q1 — ¢2)

M(q) = . (39

(q) l1l2m2 COS(ql — QQ) mglg ( )
Con una funcién de energia potencial dada por:

U(q) = —gli(m1 + mg) cos(q1) — glamz cos(qz).  (40)
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Fig. 5. Comportamiento de la sehal q,(t) durante la
simulacién del péndulo doble.

Para todas las simulaciones numéricas, las condiciones
iniciales del sistema maestro se fijaron como g@,,(0) =

T T
[g[rad] g[rad]} v Pm(0) = [o[kg rad/s] Ofkg rad/s}] .
Mientras que las condiciones iniciales del sistema esclavo

T
fueron fijadas como q,(0) = [1.57[rad] 1.57[rad]} y
ps(0) = [O[kg rad/s] Olkg rad/s]]. Note la proximidad

con respecto a los puntos iniciales del sistema maestro.
Siguiendo las condiciones de la Proposicién 3, se selec-
cioné la matriz de inercia deseada M, = Is45 vy se fijaron
las ganancias del controlador (27) como kp, = 1,k,, =
1,k,, =2y k,, =2. Con la anterior seleccién, se obtienen
las constantes €y, = €y, = €p, = 1, lo cual garantiza
la existencia de un valor € = min{eg,,€o,,€0,} > 0.
Las ganancias del controlador propuesto (19) se ajustaron
mediante prueba y error para lograr el mejor desempeno.
La senal de control us fue activada 10[s] después de
iniciada la simulacién, con el objetivo de mostrar la alta
sensibilidad del sistema a las condiciones iniciales. Los
resultados de simulacién se muestran en las Figs. 5-7.
La Fig. 5 muestra la evolucion de las trayectorias de las
coordenadas g, (t), las cuales evidencian el cumplimiento
del objetivo de control (18) una vez activada la sefial de
control. La Fig. 7 muestra la evolucién de las trayectorias
parat > 10s en los planos g, vS. ¢m, del sistema maestro
(azul) y gs, vs. gs, del sistema esclavo (rojo). Una vez ac-
tivado el control en t = 10[s] el sistema esclavo sincroniza
con el sistema maestro en aproximadamente 8]s], es decir,
en t = 18[s], y se mantiene en sincronia hasta finalizar
la simulacion. Finalmente, la Fig. 5 muestra el compor-
tamiento exponencial garantizado por la Proposicién 3. Se
puede acceder a un video de la animacién de la simulacién
del péndulo doble mediante el siguiente enlace https://
youtu.be/WNuQw6262QU.

5. CONCLUSIONES

En este trabajo se ha abordado la sincronizacién de
sistemas mecdnicos hamiltonianos caodticos mediante el
diseno de una ley de control basada en una metodologia
por moldeo de energia mas inyeccion de amortiguamiento.
El controlador propuesto garantiza estabilidad exponen-
cial del sistema en lazo cerrado resultante, lo que se
traduce en el cumplimiento del objetivo de control de
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Fig. 6. Comportamiento de la ley control (27) durante la
simulacién del péndulo doble.
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Fig. 7. Trayectorias de los sistemas maestro y esclavo
durante la simulacién del péndulo doble.

sincronizacién idéntica. La sintonizaciéon de las ganan-
cias del controlador presenta restricciones minimas, lo
que facilita su implementacién practica. Las simulaciones
numéricas realizadas sobre los sistemas caodticos consid-
erados validan tanto la estabilidad como el desempeno
del esquema propuesto. Como trabajo futuro, se plantea
el estudio de diferentes configuraciones maestro—esclavo,
asi como el desarrollo de un controlador robusto que
asegure el cumplimiento del objetivo de sincronizacion
ante perturbaciones de par en el sistema maestro.
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