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Abstract: This work addresses the synchronization of chaotic Hamiltonian mechanical systems
via an energy shaping-based control methodology within a master-slave configuration. The
proposed control scheme ensures global exponential stability (GES) of the state-space origin of
the closed-loop system. Specifically, two representative chaotic systems—the Hénon–Heiles
system and the double pendulum—are employed as two examples for illustration. The
effectiveness of the control laws is demonstrated through numerical simulations.
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1. INTRODUCCIÓN

La palabra caos habitualmente refiere a lo impredecible,
a la falta de orden o al desconcierto. Si bien se utiliza
en muchos aspectos de la vida, en f́ısica e ingenieŕıa se
emplea para describir el comportamiento de cierta clase
de sistemas dinámicos modelados mediante ecuaciones
diferenciales. A lo largo de los años se ha documentado
comportamiento caótico en sistemas estudiados en cam-
pos tan variados como la geoloǵıa (Danos (1998)), la
astronomı́a (Zeebe and Lourens (2019)), la dinámica de
fluidos (Yorke and Yorke (2005)) y la medicina (West
(2012)), entre muchos otros. Entre los trabajos pioneros
en documentar sistemas caóticos se encuentra el presen-
tado en Lorenz (1963), donde, en la búsqueda de un mod-
elo matemático que predijera el comportamiento aleatorio
del clima, el autor descubrió lo que se conoce como un
atractor extraño (Grassberger and Procaccia (1983)), el
cual se caracteriza por la evolución de las trayectorias
del sistema, representando un comportamiento aparente-
mente aleatorio e irregular. Aunque el fenómeno del caos
ha sido ampliamente estudiado, a la fecha no existe una
definición universalmente aceptada sobre lo que repre-
senta el caos en un sistema dinámico. Sin embargo, en
general se considera que un sistema dinámico es caótico
si presenta una alta sensibilidad a las condiciones iniciales
(Devaney (1989)).

Por otro lado, en las últimas décadas, la sincronización
de sistemas caóticos ha emergido como una ĺınea de in-
vestigación propia, la cual se encuentra en auge debido
a sus aplicaciones potenciales en áreas como el proce-

samiento de información (Xie et al. (2002)), redes y
transmisión de datos (Vaseghi et al. (2018)), medicina
(Vaseghi et al. (2021)), robótica (Wu et al. (2022)), en-
tre muchas otras. La sincronización de sistemas caóticos
se define como el proceso mediante el cual dos o más
sistemas caóticos—sean equivalentes o no—ajustan una
propiedad espećıfica de su dinámica para exhibir un com-
portamiento común, como resultado de una señal de con-
trol externa (Boccaletti et al. (2002)). Matemáticamente,
la sincronización puede plantearse de diversas formas,
tales como: la sincronización idéntica, donde se busca
que los estados de un sistema caótico sigan a los del
otro; la antisincronización, donde se desea una rotación
o inversión de los estados de un sistema respecto al otro;
y la sincronización parcial, donde solo ciertas variables o
componentes siguen al sistema de referencia, entre muchas
otras variantes (Boccaletti et al. (2002)). Si bien este
problema ha sido abordado desde distintos enfoques de
control, como el backstepping (Tan et al. (2003)), los mo-
dos deslizantes (Yan et al. (2006)), entre otros, es intere-
sante notar que, aunque existen sistemas en formulación
hamiltoniana que presentan caos, son pocos los trabajos
que abordan el problema de sincronización de este tipo
de sistemas mediante técnicas por moldeo de enerǵıa, un
enfoque particularmente adecuado para sistemas en dicha
formulación.

La principal contribución de este trabajo es la solución al
problema de sincronización de sistemas mecánicos hamil-
tonianos caóticos mediante una metodoloǵıa por moldeo
de enerǵıa más inyección de amortiguamiento, original-
mente presentada en (Kelly et al. (2021)). La ley de
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control propuesta garantiza el cumplimiento del objetivo
de sincronización idéntica y, además, permite obtener un
verdadero sistema hamiltoniano en lazo cerrado, el cual
tiene el potencial de cumplir distintos objetivos de control
(Sandoval et al. (2022)), lo que abre la posibilidad de ex-
tender la propuesta hacia nuevos objetivos bajo enfoques
como robustez ante perturbaciones externas e incertidum-
bres paramétricas, regulación de enerǵıa, entre otros. Lo
anterior destaca frente a las técnicas de sincronización
clásicas, en las cuales el sistema en lazo cerrado resul-
tante no tiene una estructura bien definida (Boccaletti
et al. (2002)) y se limita al cumplimiento del objetivo
de sincronización. El análisis de estabilidad del sistema
en lazo cerrado, junto con simulaciones numéricas, ilustra
el desempeño del controlador propuesto aplicado a dos
sistemas caóticos: el sistema Hénon–Heiles y el péndulo
doble.

El resto del art́ıculo está organizado de la siguiente man-
era. En la sección 2 se presenta un breve resumen de
la metodoloǵıa por moldeo de enerǵıa más inyección de
amortiguamiento. En la sección 3 se presenta la formu-
lación del problema de control y la propuesta principal del
controlador, aśı como el análisis detallado de estabilidad
del sistema en lazo cerrado propuesto. Los resultados de
simulación se presenta en la sección 4. Finalmente, las
conclusiones se presentan en la sección 5.

A lo largo del documento, se usará la notación λmin{A} y
λmax{A} para indicar el valor propio mı́nimo y máximo,
respectivamente, de una matriz simétrica definida pos-
itiva acotada A(x), para cada x ∈ Rn (denotada por
A > 0). La norma euclidiana de un vector x se de-
fine como ‖x‖ = (xTx)1/2, y para una matriz A, se
define como la norma inducida correspondiente: ‖A‖ =
(λmax{ATA})1/2. También, (·)n×n denota una matriz de
dimensiones n× n, con In×n como la matriz identidad y
0n×n como una matriz de ceros. Por otro lado, 0n ∈ Rn
representa un vector columna de ceros de dimensión n×1,
∇(·) = (∂/∂(·)), y diag{a1, a2, . . . , an} denota una matriz
diagonal de dimensión n×n, cuyos n elementos diagonales
son a1, a2, . . . , an.

2. UN ENFOQUE POR MOLDEO DE ENERGÍA MÁS
INYECCIÓN DE AMORTIGUAMIENTO DE

SISTEMAS MECÁNICOS: UN BREVE RESUMEN

Se presenta una breve revisión del método por moldeo
de enerǵıa con inyección de amortiguamiento, introducido
originalmente en (Kelly et al. (2021)) para sistemas
mecánicos no caóticos. Lo novedoso de este enfoque, en
comparación con otros métodos de moldeo de enerǵıa, es
la amplia variedad de objetivos de control que pueden
lograrse con un mismo controlador. Entre ellos se in-
cluyen: regulación de posición, seguimiento de trayecto-
rias, regulación de enerǵıa, control de velocidad, rechazo a
perturbaciones de par, y, como se abordará más adelante,
la sincronización de sistemas caóticos.

2.1 Modelo dinámico

La formulación hamiltoniana de un sistema mecánico con
n grados de libertad inicia con la definición de la función
H(q,p), la cual se obtiene como la suma de las enerǵıas
cinética y potencial del sistema, y se expresa como

H(q,p) =
1

2
pTM(q)−1p+ U(q), (1)

donde q ∈ Rn representa el vector de posiciones general-
izadas, p ∈ Rn es el vector de momentos generalizados,
M(q) = M(q)T > 0 es la matriz de inercia (simétrica
definida positiva), y U(q) es la función de enerǵıa poten-
cial, asumida al menos una vez diferenciable con respecto
a q. Adicionalmente, la representación canónica de la
formulación hamiltoniana incluye:

p = M(q)q̇, (2)

donde q̇ corresponde al vector de velocidades.

Considerando (1) y (2), el modelo dinámico de un sistema
mecánico sin fricción con n articulaciones se describe
mediante:
d

dt

[
q
p

]
=

[
0n×n In×n
−In×n 0n×n

] [
∇qH(q,p)
∇pH(q,p)

]
+

[
0n×m
G(q)

]
u, (3)

donde G ∈ Rn×m es la matriz de distribución de actu-
adores, con rango{G} = m y m ≤ n, siendo m el número
de entradas de control y n el número de grados de libertad
del sistema. Finalmente, u ∈ Rm representa el vector de
señales de control.

2.2 Metodoloǵıa de control

Para presentar la metodoloǵıa de control seleccionada,
es conveniente introducir primero algunas definiciones.
Inspirado en (1) y (2), se define la siguiente función
escalar:

Ha(qa,pa) =
1

2
pTaMa(qa)−1pa + Ua(qa), (4)

denominada hamiltoniano deseado, dondeMa(qa) : Rn →
Rn×n es una función matricial simétrica, definida positiva
y diferenciable para todo qa ∈ Rn, y Ua(qa) es una función
continua, diferenciable y definida positiva, con un mı́nimo
aislado en q∗a = 0n, que además es un punto cŕıtico de
Ua(qa). Se introduce a continuación el siguiente cambio
de coordenadas:

qa = α(q)− φ(t), (5)

pa = Ma(qa)q̇a, (6)

siendo qa ∈ Rn y pa ∈ Rn los vectores de nuevas
posiciones generalizadas y momentos, donde α(q) y φ(t)
tienen la siguiente estructura:

α(q) = [α1(q) α2(q) · · · αn(q)]
T
, (7)

φ(t) = [φ1(t) φ2(t) · · · φn(t)]
T
, (8)

donde αi(q) es una función continuamente diferenciable
respecto a q, para i = 1, . . . , n, la cual debe elegirse de
manera que se garantice rango{W (q)} = n para todo
q ∈ Rn, de modo que W (q)−1 exista, siendo W (q)
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la matriz Jacobiana de α(q), es decir, W (q) = ∂α(q)
∂q .

Además, se asume que φi(t) es una función dos veces
diferenciable. De (5) se deduce que:

q̇a = W (q)q̇ − φ̇(t). (9)

Sustituyendo q̇a de (9) en (6), y usando q̇ = M(q)−1p de
(2), se obtiene:

pa = Ta(qa, q)p−Ma(qa)φ̇(t), (10)

donde
Ta(qa, q) = Ma(qa)W (q)M(q)−1, (11)

y se cumple que rango{Ta(qa, q)} = n. Por lo tanto, el
sistema en lazo cerrado deseado se define como:

d

dt

[
qa
pa

]
=

[
0n×n In×n
−In×n −Da

] [
∇qaHa
∇paHa

]
, (12)

donde Da(qa,pa) ∈ Rn×n es la matriz de inyección de
amortiguamiento, que se definirá más adelante.

3. SINCRONIZACIÓN DE SISTEMAS
HAMILTONIANOS CAÓTICOS MEDIANTE

MOLDEO DE ENERGÍA

En esta sección se presenta la propuesta principal para
garantizar la sincronización de dos sistemas mecánicos
caóticos. Con este fin, se introducen inicialmente las
diferencias principales entre la metodoloǵıa original y la
propuesta desarrollada en este trabajo.

3.1 Caos en sistemas hamiltonianos

En esencia, y como se explicó en la Introducción, un
sistema mecánico de la forma (3) puede considerarse
caótico si presenta alta sensibilidad a las condiciones
iniciales. Esta caracteŕıstica puede cuantificarse medi-
ante una propiedad de los sistemas dinámicos conocida
como el exponente de Lyapunov (véase Barreira (2017)).
Esta magnitud se define y calcula mediante la siguiente
relación:

‖δ(t)‖ ≈ eλt‖δ0‖, (13)
donde δ(t) representa la separación entre dos trayectorias
de un mismo sistema bajo condiciones iniciales cercanas,
δ0 representa la separación inicial entre las trayectorias,
y λ es el exponente de Lyapunov. La clase de sistemas
mecánicos considerada en este trabajo se modela median-
te (3), con G = In×n y un λ positivo.

3.2 Sistema maestro-esclavo

Existen diferentes enfoques para abordar la sincronización
de sistemas caóticos, como la sincronización parcial, en
cascada e hipercaótica, entre otras (véase Pecora et al.
(1997) para una explicación detallada de cada una de
ellas). En este trabajo nos enfocamos en verificar la
sincronización idéntica de dos sistemas caóticos, la cual
se describe a continuación.

Considere el sistema caótico maestro descrito por:

d

dt

[
qm
pm

]
=

[
∇pm

Hm
−∇qmHm

]
, (14)

con

Hm(qm,pm) =
1

2
pTmM

−1
m (qm)pm + Um(qm), (15)

donde qm ∈ Rn representa el vector de posiciones gen-
eralizadas del sistema maestro, pm ∈ Rn es el vec-
tor de momentos generalizados pm = Mm(qm)q̇m, con
Mm(qm) = Mm(qm)T > 0 la matriz de inercia del
sistema maestro, y Um(qm) la función de enerǵıa potencial
del sistema maestro. Por otro lado, considere el sistema
esclavo descrito por:

d

dt

[
qs
ps

]
=

[
∇psHs

−∇qsHs + us

]
, (16)

con

Hs(qs,ps) =
1

2
pTsM

−1
s (qs)ps + Us(qs), (17)

donde qs ∈ Rn representa el vector de posiciones gen-
eralizadas del sistema esclavo, ps ∈ Rn es el vector de
momentos generalizados ps = Ms(qs)q̇s, con Ms(qs) =
Ms(qs)

T > 0 la matriz de inercia del sistema esclavo,
Us(qs) la función de enerǵıa potencial del sistema es-
clavo, y us ∈ Rn representa el vector de señales de
control del sistema esclavo. La sincronización idéntica
entre los sistemas (14)–(17) se refiere al seguimiento
asintótico del estado qs respecto de las trayectorias descri-
tas por las coordenadas qm. Esta condición se formulará
matemáticamente en la siguiente subsección. En lo suce-
sivo, nos referiremos a la sincronización idéntica simple-
mente como sincronización de dos sistemas caóticos.

3.3 Objetivo de control

Formalmente, la sincronización entre el sistema maes-
tro (14)–(15) y el sistema esclavo (16)–(17) consiste en
diseñar una ley de control us para el sistema esclavo tal
que se cumpla:

lim
t→∞

qs(t) = qm(t), (18)

para cualquier condición inicial del sistema maestro,
(qm(0),pm(0)), y del sistema esclavo, (qs(0),ps(0)).

3.4 Ley de control

A continuación, se presenta una propuesta de controlador
para el sistema (16)–(17), basada en la metodoloǵıa por
moldeo de enerǵıa más inyección de amortiguamiento
descrita en la sección 2, la cual verifica el objetivo de
control dado en (18).

Proposición 1. Considere el sistema maestro-esclavo des-
crito por las ecuaciones (14)–(17). El sistema en lazo
cerrado (12) es verificado con la siguiente ley de control:

us =∇qsHs − T−1
as

[
∇qaHa +Da∇paHa

+ Ṫasps − Ṫampm + Tam∇qmHm
]
,

(19)

donde

Tas :=MaM
−1
s , (20)

Tam :=MaM
−1
m , (21)
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cuyos argumentos qa, qs y qm han sido omitidos para
facilidad del lector.

Prueba. Del cambio de coordenadas dado en (5)-(6),
seleccionando q = qs, α(qs) = qs y reemplazando φ(t)
por qm, se sigue que la derivada temporal de (10) está
dada por:

ṗa = Ṫasps + Tas ṗs − Ṫampm − Tam ṗm. (22)

Sustituyendo ṗs de la segunda fila de (16) y ṗm de la
segunda fila de (14) en (22) se obtiene:

ṗa = Ṫasps + Tas [−∇qsHs + us]

− Ṫampm + Tam∇qmHm.
(23)

Sustituyendo en la ecuación anterior la ley de control
propuesta en (19), se obtiene:

ṗa = Ṫasps + Tas

[
− T−1

as

[
∇qaHa +Da∇pa

Ha

+ Ṫasps − Ṫampm + Tam∇qmHm
]]

− Ṫampm + Tam∇qmHm
= −∇qaHa −Da∇pa

Ha.

(24)

Lo anterior prueba el segundo renglón de (12). Por otra
parte, a partir de (4) se tiene que ∇pa

Ha = M−1
a pa, y

usando la definición en (6), se obtiene q̇a = ∇pa
Ha. Lo

anterior prueba el primer renglón de (12) lo que concluye
la demostración de la Proposición 1.

Comentario 2. La principal diferencia entre la propuesta
presentada en este trabajo y la metodoloǵıa de moldeo
de enerǵıa descrita en la sección 2 se evidencia en las
ecuaciones (19)-(21). En ambas propuesta, el objetivo de
control principal es verificar el sistema en lazo cerrado
(12) mediante una ley de control adecuada. Mientras que
en la metodoloǵıa original dicha ley involucra únicamente
los estados de un solo sistema hamiltoniano, en este
trabajo se plantea una ley de control (19) que considera
los estados de dos sistemas hamiltonianos diferentes: el
sistema maestro y el sistema esclavo.

3.5 Análisis de estabilidad

A continuación, se presenta un análisis detallado de la
estabilidad del sistema en lazo cerrado resultante (12).
Con este fin, se introduce la siguiente Proposición.

Proposición 3. Considere el sistema maestro-esclavo de-
scrito por las ecuaciones (14)–(17), con la ley de control
dada en (19) que verifica la dinámica del sistema en
lazo cerrado (12). Seleccionando Ma = M̄a como una
matriz diagonal constante definida positiva, y la función
de enerǵıa potencial deseada como Ua = 1

2q
T
aKpqa, donde

M̄a = diag{d1, d2, . . . , dn} y Kp = diag{kp1 , kp2 , . . . , kpn}
son matrices constantes, definidas positivas y arbitrarias
y la matriz de inyección de amortiguamiento Da = Kv,
donde Kv = diag{kv1 , kv2 , . . . , kvn} es una matriz diago-
nal definida positiva, entonces, el objetivo de control de
sincronización dado en (18) se verifica.

Prueba. Utilizando el diseño propuesto en la Proposición
3, el sistema deseado en lazo cerrado (12) está dado por:

d

dt

[
qa
pa

]
=

[
M̄−1
a pa

−Kpqa −KvM̄−1
a pa

]
, (25)

donde la función de enerǵıa deseada (4) puede escribirse
como:

Ha =
1

2
pTa M̄

−1
a pa +

1

2
qTaKpqa. (26)

Es importante notar que el sistema (25) es autónomo y

su origen, es decir,
[
qTa p

T
a

]T
= 02n, constituye su único

punto de equilibrio. Más aún, la ley de control (19) está
dada por:

us =∇qsHs −MsM̄
−1
a

[
Kpqa +KvM̄

−1
a pa

+ Ṫasps − Ṫampm + Tam∇qmHs
]
,

(27)

donde M̄a, Kp y Kv son las ganancias del controlador.
Continuando con el análisis de estabilidad se propone la
siguiente función de Lyapunov para el sistema en lazo
cerrado (25):

V (η) =
1

2
pTa M̄

−1
a pa +

1

2
qTaKpqa + ε0q

T
a M̄

−1
a pa, (28)

donde η =
[
qTa p

T
a

]T
y ε0 es una constante estrictamente

positiva elegida tal que satisface 0 < ε0 < ε∗0 donde:

ε∗0 = min {ε01 , ε02 , ε03} , (29)

con ε01 =

√
λmin{Kp}λmin{M̄−1

a }
λmax{M̄−1

a }
, ε02 =

√
λmax{Kp}λmax{M̄−1

a }
λmax{M̄−1

a }

y ε03
=

4λmin{M̄−1
a Kp}λmin{M̄−1

a DaM̄
−1
a }

λ2
max{M̄

−1
a DaM̄

−1
a }+4λmin{M̄−1

a Kp}λmin{M̄−1
a }

. La

función V es definida positiva y radialmente desacotada
como se demostrará a continuación. Note que el tercer
término de V cumple la siguiente desigualdad:

ε0q
T
a M̄

−1
a pa ≥ −ε0λmax{M̄−1

a }‖qa‖‖pa‖. (30)

Más aún, V verifica

V (η) ≥ 1

2
ϑTEminϑ, (31)

donde ϑ =
[
‖qa‖ ‖pa‖

]T
, siendo:

Emin =

[
λmin{Kp} −ε0λmax{M̄−1

a }
−ε0λmax{M̄−1

a } λmin{M̄−1
a }

]
. (32)

Dado que Kp y M̄a son matrices definidas positivas y
ε∗0 verifica (29), entonces Emin es una matriz definida
positiva, por lo que de (31) se concluye que V es una
función definida positiva y radialmente desacotada. Más
aún, V también satisface V (η) ≤ 1

2ϑ
TEmaxϑ, con

Emax =

[
λmax{Kp} ε0λmax{M̄−1

a }
ε0λmax{M̄−1

a } λmax{M̄−1
a }

]
. (33)

Dado que λmax{Kp} y λmax{Ma
−1} son constantes estric-

tamente positivas y ε∗0 satisface (29) entonces Emax > 0.
Lo anterior prueba que V es una función menguante. La
derivada temporal de V a lo largo de las trayectorias de
(25) está dada por:

V̇ = −qTa ε0M̄−1
a Kpqa − pTa

[
M̄−1
a DaM̄−1

a − ε0M̄−1
a

]
pa

− qTa ε0M̄−1
a DaM̄−1

a pa. (34)
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De (34) puede demostrarse que:

V̇ (η) ≤ −ε0ϑTAϑ, (35)

con la matriz A definida como:

A =

[
κ11 κ12

κ12 κ22

]
, (36)

donde κ11 = λmin{M̄−1
a Kp}, κ12 = 1

2λmax{M̄−1
a DaM̄−1

a }
y κ22 = 1

ε0
λmin{M̄−1

a DaM̄−1
a } − λmax{M̄−1

a }. La matriz

A es definida positiva si ε∗0 cumple con (29). Por lo tanto,

V̇ (η) es definida negativa. Como V es definida positiva,

radialmente desacotada y menguante, y V̇ es definida
negativa globalmente entonces el origen de (25) es un
punto de equilibrio globalmente asintóticamente estable.
Más aún, es posible demostrar con algunos argumentos
adicionales e invocando el teorema de estabilidad expo-
nencial para sistemas autónomos Khalil (2002)[Teorema
4.10 página 154] que el origen de (25), es decir, η = 02n

es un punto de equilibrio globalmente exponencialmente
estable. Del cambio de coordenadas (5) se concluye que
qa → 0n ⇒ qs → qm, lo que verifica (18). Lo anterior
completa la prueba de la Proposición 3.

4. EJEMPLOS ILUSTRATIVOS

En esta sección se presenta la aplicación de la metodoloǵıa
propuesta en dos sistemas caóticos: el sistema de Hénon-
Heiles y el péndulo doble sin fricción. Todas las simu-
laciones se realizaron en el software Matlab Simulink,
utilizando el método de integración ODE23t, con una
tolerancia de error de 1× 10−6.

4.1 Sistema Hénon-Heiles

El sistema de Hénon-Heiles describe el movimiento de una
part́ıcula en el plano bajo un potencial no lineal, y fue
investigado originalmente en Shevchenko and Melnikov
(2003). El hamiltoniano (1) del sistema Hénon-Heiles está
dado por:

H =
1

2

[
p2

1 + p2
2

]
+ U(q1, q2) (37)

donde q1 y q2 son las coordenadas generalizadas, siendo
q1 = x y q2 = y las coordenadas espaciales de la
part́ıcula en el plano, y p1 y p2 sus momentos conjugados,
respectivamente. La función de enerǵıa potencial U(q1, q2)
está dada por:

U(q1, q2) =
1

2

[
q2
1 + q2

2

]
+ γ
[
q2
1q2 −

1

3
q3
2

]
. (38)

El parámetro γ cuantifica la intensidad de la no lineali-
dad en el potencial. Sin pérdida de generalidad, se toma
γ = 1 para simplificar los cálculos sin alterar la naturaleza
caótica del sistema. De (37) se deduce que la matriz de
inercia M(q) = M̄ = I2×2. De acuerdo a Shevchenko
and Melnikov (2003) el sistema tiene un exponente de
Lyapunov (13) positivo. De acuerdo con la Proposición 3,
se propone la matriz de inercia deseada Ma = M̄a = I2×2,
además se seleccionan las matrices Kp = diag{kp1 , kp2} y
Kv = diag{kv1 , kv2}, donde kpi > 0 y kvi > 0, i = {1, 2},
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Fig. 1. Trayectorias de los sistemas maestro y esclavo
durante la simulación del sistema Henón-Heiles.

son constantes positivas. Para la simulación presentada,
las condiciones iniciales del sistema maestro fueron fi-

jadas como qm(0) =
[
0.266[m] 0.25[m]

]T
y pm(0) =[

0.42[kg m/s] 0[kg m/s]
]T

, mientras que las condiciones

iniciales del sistema esclavo fueron fijadas como qs(0) =[
0[m] 0.25[m]

]T
y ps(0) =

[
0.42[kg m/s] 0[kg m/s]

]T
.

Las ganancias del controlador se fijaron como kp1 =
2, kp2 = 2, kv1 = 2 y kv2 = 2. Con la anterior selección,

de (29), las constantes ε01
= ε02

=
√

2 y ε03
= 1.33 lo que

garantiza la existencia de un ε∗0 = min{ε01
, ε02

, ε03
} > 0.

Cabe mencionar que las ganancias del controlador pro-
puesto (19) fueron seleccionadas cuidadosamente median-
te un ajuste de prueba y error, con el fin de obtener el
mejor desempeño posible. Durante las simulaciones, la
señal de control us de (16) fue activada 5[s] después de
iniciada la simulación. Lo anterior con el fin de mostrar
la alta sensibilidad a las condiciones iniciales del sistema.
Los resultados de simulación se muestran en las Figs. 1-3.
La Fig. 1 muestra la evolución de las trayectorias de la
part́ıcula dada por el sistema maestro (azul) y el sistema
esclavo (rojo). Para el sistema maestro, el eje horizontal
representa la coordenada qm1 , mientras que el eje vertical
representa la coordenada qm2 . Para el sistema esclavo,
el eje horizontal representa la coordenada qs1 y el eje
vertical, la coordenada qs2 . Se observa que, aunque las
condiciones iniciales son muy cercanas, las trayectorias
de ambos sistemas divergen de forma exponencial trans-
curridos algunos segundos (lo cual verifica el exponente
de Lyapunov positivo). Más aún, se aprecia que, una
vez activado el control en t = 5[s], el sistema esclavo se
sincroniza con el sistema maestro en aproximadamente
7[s], es decir, en t = 12[s], y continúa en sincrońıa
hasta finalizar la simulación. Finalmente, es importante
remarcar que en las Fig. 2 se aprecia el comportamiento
exponencial garantizado por la Proposición 3.

4.2 Péndulo doble

En esta sección se presenta la aplicación del controlador
propuesto (19), utilizando como planta un péndulo doble.
Este sistema exhibe una alta sensibilidad a las condiciones
iniciales —caracteŕıstica de los sistemas caóticos—, como
ha sido estudiado ampliamente en Shinbrot et al. (1992).
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Fig. 2. Comportamiento de la señal qa(t) durante la
simulación del sistema maestro-esclavo Hénon-Heiles.

Fig. 3. Comportamiento de la ley control (27) durante la
simulación del sistema Hénon-Heiles.

Fig. 4. Esquema de un péndulo doble.

En la Fig. 4 se muestra un esquema del péndulo doble
utilizado, donde q1 y q2 representan las posiciones ar-
ticulares. Este sistema está compuesto por dos péndulos
simples conectados en serie, donde el segundo cuelga
del extremo del primero. Cada péndulo consiste en una
masa puntual unida a una varilla ŕıgida sin masa, cuya
movilidad está restringida a un plano vertical. El punto
de suspensión del primer péndulo está fijo, y se asume
que el movimiento es completamente libre de fricción.
Los parámetros dinámicos de los dos eslabones son lon-
gitud del eslabón li, y la masa mi, con i = 1, 2. La
aceleración de la gravedad es g. Los valores nominales de
estos parámetros para ambos sistemas utilizados durante
la simulación fueron l1 = 1.2[m], l2 = 1.6[m],m1 = 0.2[kg]
y m2 = 0.3[kg]. El modelo dinámico (3) se puede describir
con las matrices:

M(q) =

[
l21(m1 +m2) l1l2m2 cos(q1 − q2)

l1l2m2 cos(q1 − q2) m2l
2
2

]
. (39)

Con una función de enerǵıa potencial dada por:

U(q) = −gl1(m1 +m2) cos(q1)− gl2m2 cos(q2). (40)

Fig. 5. Comportamiento de la señal qa(t) durante la
simulación del péndulo doble.

Para todas las simulaciones numéricas, las condiciones
iniciales del sistema maestro se fijaron como qm(0) =[
π
2 [rad] π

2 [rad]
]T

y pm(0) =
[
0[kg rad/s] 0[kg rad/s]

]T
.

Mientras que las condiciones iniciales del sistema esclavo

fueron fijadas como qs(0) =
[
1.57[rad] 1.57[rad]

]T
y

ps(0) =
[
0[kg rad/s] 0[kg rad/s]

]
. Note la proximidad

con respecto a los puntos iniciales del sistema maestro.
Siguiendo las condiciones de la Proposición 3, se selec-
cionó la matriz de inercia deseada Ma = I2×2 y se fijaron
las ganancias del controlador (27) como kp1 = 1, kp2 =
1, kv1 = 2 y kv2 = 2. Con la anterior selección, se obtienen
las constantes ε01

= ε02
= ε03

= 1, lo cual garantiza
la existencia de un valor ε∗0 = min{ε01

, ε02
, ε03
} > 0.

Las ganancias del controlador propuesto (19) se ajustaron
mediante prueba y error para lograr el mejor desempeño.
La señal de control us fue activada 10[s] después de
iniciada la simulación, con el objetivo de mostrar la alta
sensibilidad del sistema a las condiciones iniciales. Los
resultados de simulación se muestran en las Figs. 5-7.
La Fig. 5 muestra la evolución de las trayectorias de las
coordenadas qa(t), las cuales evidencian el cumplimiento
del objetivo de control (18) una vez activada la señal de
control. La Fig. 7 muestra la evolución de las trayectorias
para t ≥ 10 s en los planos qm1 vs. qm2 del sistema maestro
(azul) y qs1 vs. qs2 del sistema esclavo (rojo). Una vez ac-
tivado el control en t = 10[s] el sistema esclavo sincroniza
con el sistema maestro en aproximadamente 8[s], es decir,
en t = 18[s], y se mantiene en sincrońıa hasta finalizar
la simulación. Finalmente, la Fig. 5 muestra el compor-
tamiento exponencial garantizado por la Proposición 3. Se
puede acceder a un video de la animación de la simulación
del péndulo doble mediante el siguiente enlace https://
youtu.be/WNuQw6262QU.

5. CONCLUSIONES

En este trabajo se ha abordado la sincronización de
sistemas mecánicos hamiltonianos caóticos mediante el
diseño de una ley de control basada en una metodoloǵıa
por moldeo de enerǵıa más inyección de amortiguamiento.
El controlador propuesto garantiza estabilidad exponen-
cial del sistema en lazo cerrado resultante, lo que se
traduce en el cumplimiento del objetivo de control de
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Fig. 6. Comportamiento de la ley control (27) durante la
simulación del péndulo doble.
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Fig. 7. Trayectorias de los sistemas maestro y esclavo
durante la simulación del péndulo doble.

sincronización idéntica. La sintonización de las ganan-
cias del controlador presenta restricciones mı́nimas, lo
que facilita su implementación práctica. Las simulaciones
numéricas realizadas sobre los sistemas caóticos consid-
erados validan tanto la estabilidad como el desempeño
del esquema propuesto. Como trabajo futuro, se plantea
el estudio de diferentes configuraciones maestro–esclavo,
aśı como el desarrollo de un controlador robusto que
asegure el cumplimiento del objetivo de sincronización
ante perturbaciones de par en el sistema maestro.
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