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Abstract: This paper uses a control theory perspective to analyze a simplified mathematical
model of the effect of human carbon emissions on global temperature. Based on a previously
published model, human emissions are incorporated as an exogenous input into the system. A
singular perturbation argument is used to derive areduced order model. Finally, a bifurcation
analysis is used to analyze its tipping points by studying the effect of applying feedback control
when emissions are regulated to be proportional to the deviation from the desired temperature.
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1. INTRODUCCION

Aunque la tendencia actual para estudiar los efectos de
las emisiones de carbono se basa principalmente en la
obtencién y el andlisis estadistico de grandes volimenes
de datos, utilizar un modelo dinamico de baja dimensién
resulta muy 1til en el andlisis de los sistemas climaticos
porque permite aislar mecanismos dentro de un modelo
global. Al enfocarse en procesos especificos es posible
analizar aquellas relaciones entre un nudmero reducido
de variables que resultan clave en fenémenos de interés,
en particular aquellos relacionados con los denominados
tipping points (cominmente traducido al espafiol como
“puntos de inflexién”).

En este contexto, un punto de inflexién se entiende como
un estado del sistema en donde un pequeno cambio en
ciertos parametros o variables internas produce un gran
cambio en la respuesta del sistema. Por ejemplo, muchos
de estos puntos de inflexién estdn relacionados con el
aumento de la temperatura promedio terrestre (Ritchie
et al., 2021). Por lo tanto, resulta relevante retomar un
modelo publicado anteriormente para estudiar los efectos
de las emisiones de carbono en el crecimiento de la biota
(i.e., el conjunto de organismos vivos en el modelo) y en
la temperatura promedio anual terrestre.

La informacién presentada en el articulo se estructuré de
la siguiente manera. En la primera seccién se presenta una
introduccién y planteamiento del problema. En la segunda
seccidén se presenta una recapitulacién general de los princi-
pios del modelo de ciclo de carbono. En la tercera seccién
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se presenta y justifica un modelo de dimensién reducida
obtenido a través de un argumento de perturbaciones
singulares. Finalmente, en la cuarta seccién se presentan
las simulaciones numeéricas, un analisis del espacio fase y
de los equilibrios del modelo. En los Apéndices A y B
se formulan las funciones y los pardmetros planteados en
Svirezhev and von Bloh (1997) para el modelo y que son
utilizados en este trabajo para realizar las simulaciones
numéricas. La escala de tiempo del modelo se encuentra
en afos [yr] y las unidades utilizadas que no pertenecen
al Sistema Internacional de Unidades son las utilizadas
comunmente para describir estas magnitudes en las fuentes
consultadas.

2. MODELO DE CICLO DE CARBONO
2.1 Formulacion del modelo

Bajo la premisa que todo el carbono del sistema climatico
se encuentra alojado en la atmoésfera y en la vegetacion, el
modelo planteado por Svirezhev and von Bloh (1997) se
encuentra conformado por: (1) un modelo de intercambio
de energfa, (2) un modelo de intercambio de masa, y (3)
un modelo de crecimiento de la biota en el planeta rep-
resentada por la vegetacién. Se utiliza al carbono alojado
en la vegetacién N [Gt], como la medida de su biomasa
y se relaciona su crecimiento con la tasa de cambio de la
temperatura anual promedio T [K°/C°] del planeta y con
el carbono presente en la atmdsfera C' [Gt].

La ecuacién que describe la tasa de cambio de la temper-
atura se basa en un modelo de intercambio de energia de
un planeta, utilizando los conceptos de albedo y emisividad
para modelar la energia absorbida y emitida por el planeta.
Con mads precisién, el albedo a € [0,1] se define como la
_/magnitud adimensional que representa la proporcion de luz
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que refleja la superficie de un cuerpo. De manera experi-
mental se ha mostrado la relacién que el albedo presenta
con el color de las superficies (Betts and Ball, 1997), en
este caso correspondiendo al color verde caracteristico de
la vegetacién. En este caso, el albedo presenta tipicamente
valores bajos, lo que se puede interpretar como una alta
capacidad de la vegetacion para absorber la energia del sol.
Como en el planteamiento del problema no se encuentran
definidas otras superficies ademds de la vegetacién, un
aumento en la vegetacién implica una disminucién en el

albedo (Svirezhev and von Bloh, 1996).

Como la biomasa de la vegetacién depende del car-
bono N alojado en la vegetacion, se formula la funcién
mondtonamente decreciente a(N) : RY — [qunin, Qmax)s
con 0 < amin < Omax < 1, @(0) = amax ¥ @(N) = amin
cuando N — oo. Definiendo el parametro S como la
energia proveniente del sol [W/m?], la energia absorbida
por la superficie del planeta se modela por la funcién

H(N) = S(1 - a(N)).

Por otro lado, la emisividad es una magnitud adimensional
que determina la efectividad de un cuerpo para emitir
energia como radiacién térmica. La emisividad del planeta
se encuentra relacionada con la concentracion de carbono y
otros gases en la atmdsfera a través del efecto invernadero,
el proceso en el que estos gases absorben parte de la
radiacién térmica emitida por el planeta y la emiten hacia
la superficie de la tierra (Stocker, 2011). Por tanto, la
emisividad del planeta es una funcién decreciente de los
gases de efecto invernadero alojados en la atmodsfera y
representados en el modelo por el carbono C. Definiendo
la funcién decreciente p(C) : RT — [ps0, 1], con ¢(0) = 1
y ©(C) = @o para C — oo. De la ley de Stephan-
Boltzmann, sabemos que la potencia emisiva de un cuerpo
negro ideal es B, = oT* donde o es la constante de
Stephan-Boltzmann [W/m?K*%] y T es la temperatura
promedio anual del planeta [K]. Para un cuerpo gris, la
potencia emisiva depende de la emisividad ¢ del cuerpo, de
ahf que la potencia emisiva del planeta es E, = op(C)T*.
Definiendo a k como la capacidad calorifica de la superficie
del planeta [J/m?K], balance de energia implica que la
cantidad de calor acumulada en la superficie es

KT = $(N) — op(C)T*, (1)
véase Stocker (2011).

La dinamica de la vegetacion se describe por un modelo
de crecimiento de biomasa, con la peculiaridad de que esta
se encuentra cuantificada por la cantidad de carbono en la
vegetacion. El crecimiento del carbono en la vegetacion N
depende del carbono atmosférico C, de la temperatura T
y del carbono en la vegetaciéon N y es modelado por la
funcién

El pardmetro P,, [Gt/year| representa la méaxima pro-
duccién anual de vegetacién por ano. De acuerdo con el
principio de Leibig (Sinclair and Park, 1993), la funcién
de crecimiento P(N,T,C) tiene una forma multiplicativa
dependiente de los tres estados del modelo. A diferencia
de modelos de crecimiento de vegetacion definidos por
una funcién de varias variables (Cox et al., 2004), la pre-
sentacién en forma multiplicativa utilizada en (2) permite
modelar de manera sencilla la dependencia que presenta
el crecimiento de la vegetacion en todas las variables. Se

Copyright® AMCA, ISSN: 2594-2492

define el siguiente comportamiento para las funciones de
crecimiento: gr(T) : R — [0,1] modela el efecto de la
temperatura, gy(N) : RT — [0,1] modela el efecto de
la vegetacion, y go(C) : RT — [0, csat] modela el efecto
del carbono con csq; < 1 un parametro de saturacién. El
modelo de crecimiento de vegetacién esta dado por

N = Prgr(T)gn (N)ge(C) —mN, (3)
el pardmetro m [yr~!] es la tasa de eliminacién anual de
la vegetacién (i.e., mortalidad). Denominando como u a
las emisiones de carbén antropogénicas anuales y bajo la

premisa planteada inicialmente en el modelo de balance de
masa, la tasa de cambio del carbono atmosférico es

C = —Pugr(T)gn(N)gc(C) + mN + u. (4)

Para simplificar el modelo, en Svirezhev and von Bloh
(1997) se define el carbono total contenido en el sistema
como A = C+ N. Su derivadaes A = N+C, por lo tanto,
de (3) y (4) esta expresién se reduce a A = u. La ecuacién
(1) se puede formular en términos de la variable A como

KT = ¢(N) — op(A — N)T*. (5)

El producto de las funciones g (C)gn (N) se sustituye por
una funcién de dos variables G(A,N) : D, — [0,1], con

D, ={(A,N)|A > 0,A > N}. Las ecuaciones A = u, (3)
y (5) conforman el modelo de intercambio de carbono:

A=u,
N = P,,g(T)G(A, N) — mN, (6)
kT = (N) — op(A, N)T*.

Las funciones que determinan el comportamiento de N y
T en (6) son continuamente diferenciables en el dominio
donde se encuentra definido el modelo. Estas funciones se
describen en el apéndice A.

En la Seccién 4 se formulan distintos esquemas de emision
para u y se analiza la respuesta del sistema en el plano fase.
Todas las simulaciones fueron realizadas con los valores
para los parametros que fueron propuestos en el trabajo
donde se present6 el modelo originalmente (Svirezhev and
von Bloh, 1997). Estos valores se presentan en las tablas
B.1, B.2 y B.3 del apéndice B.

3. REDUCCION DEL MODELO
3.1 Forma estdndar de perturbaciones singulares

El modelo (6) presenta lo que se denomina como la forma
estandar del modelo de perturbaciones singulares:

& =gi(t,x, z,€) (7)
€z = go(t,x,2,€). (8)

En las ecuaciones (7), (8) se asume que el campo vectorial
g es diferenciable. Para el modelo (6) se tiene z € R?, 2z € R
y € > 0. Al fijar el pardmetro e = 0, (8) se degenera en la
ecuacién algebraica 0 = gy. Definiendo como z = hO(t, x)
a la raiz real de gs, se obtiene el modelo reducido

izgl(tvxa ho(tax)70)v (9)

con v = (AN)T, 2 = T, y ¢ = k. Utilizando el
g)lanteamiento descrito anteriormente es posible realizar
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una reduccién en la dimensién de (6) de manera explicita
al fijar k = 0 obtenemos

0=1(N)—op(A, N)T*. (10)

La ecuacién (10) tiene una raiz real para cada (4, N) € D,
dada por la expresién T := h°(A, N). De manera explicita

BN 1/4
= ()
Al sustituir (11) en (6) se obtiene el modelo reducido
A=u
N = P,,G(A, N)g(h°(A, N)) — mN.

(11)

(12)

El modelo (12) generalmente se denomina modelo de es-
tado cuasi-estacionario o modelo lento porque la velocidad
de T = g¢o/k puede ser muy grande cuando 7' # 0
y la dindmica del modelo converge a una rafz de (10)
(Kokotovic et al., 1976). Como la variable T' se excluyé
de (12) y se sustituyé por (11) en el modelo de estado
cuasi-estacionario, sélo es posible obtener la aproximacién
T(t) = hO(t, A(t), N(t)). El planteamiento geométrico de
(12) se encuentra justificado en el teorema de la variedad
invariante de Fenichel (Jones, 2006).

3.2 Propiedades en la escala de tiempo

El modelo (6) se encuentra asociado a un comportamiento
caracterizado por dos escalas de tiempo. Al utilizar un
cambio de variable para el tiempo, T = t/k, (6) se puede
reescribir como

dA

e ku,

9T _ (N) = op(A, N)T*.
dr

La escala de tiempo dada por 7 es rapida, mientras que
la escala de tiempo dada por t es lenta. Para k # 0, el
comportamiento de este modelo es equivalente a (6); sin
embargo, ambos modelos presentan un comportamiento
distinto cuando k = 0. Es decir, para k = 0 en (13), dT'/dr
es distinta a cero mientras que las variables restantes se
mantienen constantes o en equilibrio:

dA dN
ar a0
dT (14)

= (N) — op(4,N)T*.

dr
Los equilibrios del modelo (14) son todos los puntos
del espacio fase que pertenecen a la superficie (11). En
contraste, cuando k = 0 en el modelo (6), se recuperan
(10) y (12). En otras palabras, todas las trayectorias
colapsan sobre el conjunto {4, N, h°(A, N)} y la dindmica

del modelo se encuentra descrita por A y N. En la figura 1
se observa que con u = 0 las trayectorias de (6) convergen
al conjunto {A, N,h°(A, N)} en el espacio fase.

3.8 Variedades invariantes hiperbdlicas

La reduccién del modelo se encuentra fundamentada en
las propiedades geométricas de los modelos (6) y (13).
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Fig. 1. Espacio fase {A,N,T}. Para u = 0, las trayectorias
de (6) (en negro) convergen a una curva cy (en
azul) sobre la superficie h°(A, N). La curva éy es
difeomorfa a ¢y en el dominio D,.

El conjunto de los puntos de equilibrio para (14) es
una superficie parametrizada por (A, N), que localmente
es difeomorfa a R2. Esta parametrizacién es una var-
iedad My = {(A,N,T) : T = h°(A,N)} con h°(A,N)
definido en el dominio compacto (cerrado y acotado)
D, C R2. Se dice que la variedad M, es normalmente
hiperbdlica si la linealizacién de (13) en cada punto de My
tiene exactamente 2 valores propios en el eje imaginario
(Jones, 2006). La linealizacién Df de (14) sobre cualquier
(A,N,h°(A,N)) € My esté dada por

0 0 0
Df = 0 0 0
_path pYN—YoN —40@(h0)3
@ ®

y su polinomio caracteristico es

det(M — Df) = A2(\ +4op(A, N)(h° (A, N))3).  (15)
Los valores propios de (15) son A\; = Ag = 0y A3 =
—40p(A, N)(h°(A, N))3. Se define el concepto de variedad
invariante utilizando la nocién del flujo. Se denomina como
¢+(xo) al flujo del campo vectorial sobre la condicién inicial
xo después de un tiempo ¢, es decir, z(t,z9) = ¢i(zo)
(Wiggins, 2013). Se dice que un conjunto M es localmente
invariante bajo el flujo de (13) si existe una vecindad V
de M tal que ninguna trayectoria puede abandonar M
sin abandonar V. En términos del flujo ¢:(x), el conjunto
de M es localmente invariante si para todo =z € M,
¢i(x) C V. El primer teorema de Fenichel proporciona
las condiciones suficientes para asegurar la convergencia
de las trayectorias de (6) a la variedad My y la existencia
de una variedad M}, que es una perturbaciéon de My:

Teorema [Fenichel]. Si e > 0 es suficientemente pequerio,
existe una variedad M. que se encuentra adentro de un
entorno O(e) de My y es que es difeomorfa a My. Ademaés,
M. es localmente invariante bajo el flujo de (13).

Este teorema puede ser reformulado en términos de la
parametrizacién del conjunto My. Si k > 0 es suficiente-
mente pequeiio, existe una funcién T = h*(A, N) definida
en el dominio compacto D,, tal que la variedad

M, ={(A,N,T): T = h*(A,N)} (16)

9
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es difeomorfa a My y es invariante bajo el flujo de (13).
Sustituyendo h¥(A, N) en (13), se obtiene un conjunto
de ecuaciones para A y N desacopladas de la variable T
Como = = (A, N) parametriza a la variedad My, el sistema
resultante describe el flujo de (13) en M}, y estd dado por

dA

— = ku,

e (17)
o k(PnG(A,N)g(h*(A,N)) —mN).

El modelo (17) se encuentra en una escala de tiempo
rapida, utilizando t = k7 se puede reformular en la escala
lenta como

dA

— =u,

N (18)
E = PmG(Aa N)g(h’k(A7 N)) —mN,

como h*(A,N) — h°(A, N) cuando k — 0, se recupera el
modelo (12).

4. SIMULACIONES NUMERICAS Y DIAGRAMAS DE
EQUILIBRIOS

4.1 Funciones de emision

La entrada exdgena u en la dindmica de (6) y (12) se
formula como una funcién de los estados del modelo e
independiente del tiempo que cumpla con la restriccion
u > 0. Utilizando esquemas sencillos de emisién, buscamos
realizar un analisis basico del comportamiento del modelo
en el plano fase al estudiar propiedades geométricas como
la existencia de los puntos de equilibrio o la determinacién
de las cuencas de atraccién para el modelo.

El esquema méas simple de emisién se obtiene al fijar
u=0en (6) y (12). Para la condicién inicial zg, cualquier
trayectoria de (6) (figura 1) converge a la trayectoria (12)
(figura 2). En la regién del plano fase donde el modelo es
valido las trayectorias convergen a los conjuntos

CNy, = {(AvN)|N = 0}’

CNy = {(Av N)|PmN71G(A’ N)g(hO(Av N)) —m= 0}

(19)

Se define cy = ¢y, U cn, como la ceroclina de N para
el modelo (12). Dependiendo de la condicién inicial z(to)
cada trayectoria converge a uno de los dos conjuntos. El
conjunto cy, corresponde al eje A y conforma una rama
de equilibrios estables, que de manera intuitiva se asocia
con la eliminacién de la biota en el modelo (N = 0). El
conjunto cy, estd conformado por puntos de equilibrio
estables e inestables, de manera maés especifica, es posible
reescribir ¢y, como la relacion F(A,N) = 0. Por el
teorema de la funcién implicita sabemos que localmente,
para cualquier xg = (Ag, Ny) se puede definir una funcién
N = f(A), tal que F'(A, f(A)) = 0 siempre que Fy(xo) #
0. Se denominan como singulares a aquellos puntos s tales
que F(zs) = Fn(zs) = 0, (Golubitsky et al., 2012). En
particular, para cy, existen dos puntos singulares x5, =
(As;, Ns,) ¥ ©s, = (Asy, Ns;). Al eliminar estos puntos
smgulares del conjunto cp, se obtienen dos conjuntos
conexos y disjuntos que pueden ser caracterizados al definir
a N como una funcién de A,
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Fig. 2. Plano fase {A, N} del modelo reducido. Utilizando

u = 0, las trayectorias de (12) (en color negro)

convergen a cy, Ucy, (en azul). Se muestran las curvas
de nivel para h’(A, N).

F(A, f1(A)) =0,
F(Aa fQ(A)) = Oa

Las trayectorias que parten desde el interior de cpy, con-
vergen al conjunto F'(A, f1(A)) = 0, el segmento superior
de cn, que corresponde a la rama de equilibrios estables
para N # 0. El segmento inferior F'(A, f2(A)) corresponde
a la rama de equilibrios inestables. La curva azul sobre la
superﬁcie h°(A,N) en la ﬁgura lesey = {(A,N,T) :

=h'(A,N)}n{(A,N,T) g En otras palabras,
observamos que, como la superﬁ(ne hP(A, N) es difeomorfa
al semiplano {(A,N)|A > 0,A > N} las curvas CN Y CN
son difeomorfas.

el segmento superior de cy,,
el segmento inferior de cy,.

Si se considera al carbono total A (por consecuencia
también al carbono atmosférico C') como un pardmetro
para N, es posible interpretar a ¢y como un diagrama de
bifurcacién en el que existen tres ramas de equilibrios, dos
ramas estables (¢n, v F(A4, fi(A))), una rama inestable
(F(A, f2(A))) v dos puntos de bifurcacién (zs, v s,).
Para x4, el nimero de puntos de equilibrio de (12) cambia
de uno a tres (dos equilibrios estables y un equilibrio
inestable) y para z,, el ntimero de equilibrios otra vez
cambia de tres a uno. En la figura 2 se muestra la ceroclina
de N (en azul), los puntos singulares x5, y x5, y las
curvas de nivel de (11) para distintos valores de T. Es
posible caracterizar al punto singular x,, como un punto
de inflexién para (12), debido a que cuando una trayectoria
avanza més alla de x,, converge a cy, y no es posible
regresar al modelo a un estado en el que N > 0.

4.2 Emision proporcional

Para estudiar algunas propiedades de (12), como la exis-
tencia de cuencas de atraccién y separatrices o el com-
portamiento de los puntos de equilibrio, se formula un
esquema de emisién idealizado en el que las emisiones son
reguladas a ser proporcionales a la desviacién entre un
valor deseado para la temperatura Ty y el valor real del
modelo

10 UZTd—hO(A,N).

(20)
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La ecuacién (20) puede considerarse como un esquema
proporcional con ganancia unitaria. Se define como c4 a
la ceroclina de A, en la figura 3 se muestra cy, ademads
de las curvas de nivel para distintos valores de 7. En
particular, la curva de nivel para T = 15 mostrada en
verde corresponde al conjunto ¢4 para un Ty ~ 15 C°. Se
denomina como z3 al punto de equilibrio generado por la
interseccién de c4 con ¢y, y como x5 y x] a los puntos de
equilibrio generados por la interseccién entre c4 y cn,.-

Los valores propios de la linealizacién de (12) sobre los
tres puntos de equilibrio tienen una parte real diferente
de cero, de ahi que se denominen como hiperbdlicos y que
su estabilidad pueda ser determinada por su linealizacién
en una vecindad alrededor de ellos, (Wiggins, 2013). Se
concluye que z7 y x3 son puntos de equilibrio estables y
x5 es un punto de equilibrio inestable.

4.8 Cuencas de atraccion y formulacion alterna para la
emision proporcional

Como =3 es un punto silla, Df(z}) presenta un valor
propio con parte positiva y otro con parte real negativa.
Denominando como v; al vector propio que corresponde
al valor propio con parte real positiva y como v al vector
propio que corresponde al valor propio con parte real neg-
ativa, los subespacios lineales de x4 son respectivamente
E* = span{v;} y E®* = span{vy}. Para el punto de
equilibrio inestable hiperbdlico x5, existe una superficie
W (x3) tangente a E* en x = z3 y una superficie
W .(z3) tangente a E® en x = x5 con la propiedad de que
las trayectorias de los puntos sobre W} _(z5) se aproximan
a x(tg) asintéticamente en tiempo negativo (t — —o0) y
las trayectorias sobre los puntos de W} (x3) se acercan
asintéticamente a x(tg) en tiempo positivo (t — 00).

W (x5) y W (z3) son las variedades estable e inestable
respectivamente de x5, (Wiggins, 2013). La variedad es-
table Wlic(xg) se denomina separatriz y posee la propiedad
de que divide al espacio fase en las cuencas de atraccién
para el punto de equilibrio estable x] asociado a la pres-
encia de la vegetacién (A, N > 0), mientras que el punto
de equilibrio estable z3 se asocia con la eliminacién de la
vegetacion en el modelo (A4, N = 0). La variedad W5 _(x3)
se muestra en rojo en la figura 3 ademads de los puntos de
equilibrio #3 y 7 para un T; =~ 15C°. Como consecuencia
de la diferencia en las escalas de tiempo entre las variables
A y N, para el punto de equilibrio 23 se tiene que la
coordenada A es mayor que el rango de los ejes y x5 no
aparece en la figura 3.

El conjunto c4 divide al semiplano A > N en dos regiones
I = {(A,N)[T; > h(A,N)} y I = {(A,N)[i(A,N) >
T,;}. Considerando la restricciéon v > 0, el esquema de
emisién planteado en (20) solo es valido en la regién I. De
ahi que se reformule u como

u = max{0, Ty — h'(A, N)}. (21)
Este modelo se basa en el planteamiento de apagar las
emisiones para ciertas regiones del plano fase. Las trayec-
torias para (21) y la variedad W5 (x3) se muestran en la
figura 3. Las trayectorias que parten de la region I y que
no cruzan cy pueden converger a los puntos de equilibrio
estables 27 o 23, dependiendo de si la condicién inicial z(0)
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Fig. 3. Plano fase {A, N} del modelo reducido con u =
max{0,T; — h°(A, N)}. La separatriz W (z3) (en
color rojo) divide las cuencas de atraccién para xf
y x%. Las trayectorias (en color negro) convergen a

los puntos de equilibrio o a ¢y, Ucn,.

pertenece a cualquiera de las dos cuencas de atraccién. Las
trayectorias que parten de I y que cruzan c¢; convergen
al conjunto cp,. Para la regién II se define u = 0. Las
trayectorias que no cruzan c4 convergen al conjunto cp,
mientras que las trayectorias que cruzan c4 convergen a
x%. Las curvas de nivel de h°(A, N) en las figuras 2 y 3
nos permiten visualizar que para cada punto de equilibrio
estable de cy, se encuentra asociado un valor de T', que
corresponde a T = h%(A, N).

De manera intuitiva, se observa que conforme el valor de T’
crece, la curva de nivel se desplaza sobre cy,. Cuando no
existe una interseccion entre alguna de las curvas de nivel
y el conjunto cy, las trayectorias del sistema convergen
hacia el conjunto cp,, una condicién indeseable ya que
implica una desaparicién de la biota en el modelo (el eje
N =0).

El conjunto ¢y resulta fundamental para entender el com-
portamiento del modelo de manera independiente de la
funcién de emisién planteada. La presencia de puntos sin-
gulares en el conjunto, caracteristica presente en muchos
modelos climaticos, genera que en una regién cercana a
Zs,, Un cambio gradual en A genera una atracciéon de la
trayectoria del modelo hacia N = 0.

5. CONCLUSIONES

Las emisiones antropogénicas de carbono son un fenémeno
complejo, sin embargo este primer acercamiento nos per-
mitié caracterizar algunas propiedades estructurales sen-
cillas de los modelos ecolégicos. En la fuente que se tomé
como referencia principal, los pardametros utilizados en la
simulacion fueron obtenidos haciendo suposiciones acerca
de los puntos de equilibrio de las variables. Este enfoque
no contradice nuestro objetivo, por lo tanto los pardmetros
y las funciones utilizadas no fueron modificadas. Sin em-
bargo, resulta ttil generar un planeamiento orientado a
explorar herramientas para cuantificar la desviacién de los
datos generados por el modelo y los datos reales, ademas de
estudiar en qué medida es posible corregir esa desviacion
]&1 actualizar estos parametros a través de otras técnicas.
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Apéndice A. FUNCIONES

Se presentan las variables y las funciones definidas en
Svirezhev and von Bloh (1997) para el modelo climético.

A.1 Variables

Tabla A.1. Variables en el modelo de ciclo de

carbono
Simbolo Definicién Unidad
N Carbono en la vegetacién Gt
C Carbono en la atmésfera Gt
A Carbono total en el planeta A + N Gt
T Temperatura anual promedio Ke°/C°

A.2 Modelo de intercambio de energia

e Funcién de albedo a(N) : RT — [@min, @maz], con
0 < min < Qmaz < 1, con a(0) = amar y @(N) —
Qmin para N — oo.

ko + a2V

a(N) = M

(A1)
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e Funcién de absorcién de energia ¢)(N) : S(1 —a(N)).
Se define s; = S(1 — 1), s2 = S(1 — ag).
PY(N) : RY — [s1, 82], con s9 > s7.

kasl —+ 82N
Ny=———" A2
p(v) = Pt el (A2
¥(0) = s1 con Y(N) — s2 cuando N — oco.
e Funcién de emisividad ¢(4,N). p(A,N) : D, —

[0, 1]. Con (A, A) = 1y ¢(A,N) = @o para

A>>N.
kC + Yoo (A — N)
A/ N) = A3
o4, N) = " (43)
con D, = {(A,N)|A>0,A> N}.
A.3 Modelo de crecimiento de biomasa
e Funcién de crecimiento de la vegetacion con respecto
al carbono:
4
G(A,N) = EN(A—N)7 (A.4)

e Funcién de crecimiento de la vegetacion con respecto
a la temperatura:
4
donde T7 es la temperatura minima en la que puede
crecer la biota, Ty es la temperatura maxima y AT =

Ty — Ty. La temperatura 6ptima de crecimiento es
Topt - (Tl + T2)/27 g(Topt) =1

Apéndice B. UNIDADES Y VALORES DE LOS

PARAMETROS

Tabla B.1. Modelo de intercambio de energia:
Constantes fisicas

Simbolo Valor Unidad
k 3.1536 x 107  J/m?’K
S 342 W/m?
o* 5.67 x 1078  W/m?2K*

*En el trabajo original se utiliza una aproximacién ¢” =
4.68 x 1078 W/m?K* para compensar la ausencia de vapor
de agua en los gases de invernadero.

Tabla B.2. Modelo de intercambio de energia

Definicién Simbolo  Valor  Unidad
Albedo méximo, N =0 Qmax 0.4 au
Albedo minimo, N =0 Qmin 0.1 au
Pardmetro auxiliar en ¢(C) ke 600 Gt
Emisividad minima, C — oo Poo 0.6 au
Valor de referencia, T' Ty 288.5 K°
Pardmetro auxiliar en a(N) ko 750 Gt

Tabla B.3. Modelo de crecimiento de veg-

etacién
Definicién Simbolo  Valor  Unidad
Tasa de muerte, N m 0.06 yr— 1
Méxima produccién, N P, 80 Gt/yr
Limite superior de T' T> 313 K°
Limite inferior de T’ T 278 K°
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