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Abstract: This paper uses a control theory perspective to analyze a simplified mathematical
model of the effect of human carbon emissions on global temperature. Based on a previously
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singular perturbation argument is used to derive areduced order model. Finally, a bifurcation
analysis is used to analyze its tipping points by studying the effect of applying feedback control
when emissions are regulated to be proportional to the deviation from the desired temperature.
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1. INTRODUCCIÓN

Aunque la tendencia actual para estudiar los efectos de
las emisiones de carbono se basa principalmente en la
obtención y el análisis estad́ıstico de grandes volúmenes
de datos, utilizar un modelo dinámico de baja dimensión
resulta muy útil en el análisis de los sistemas climáticos
porque permite aislar mecanismos dentro de un modelo
global. Al enfocarse en procesos espećıficos es posible
analizar aquellas relaciones entre un número reducido
de variables que resultan clave en fenómenos de interés,
en particular aquellos relacionados con los denominados
tipping points (comúnmente traducido al español como
“puntos de inflexión”).

En este contexto, un punto de inflexión se entiende como
un estado del sistema en donde un pequeño cambio en
ciertos parámetros o variables internas produce un gran
cambio en la respuesta del sistema. Por ejemplo, muchos
de estos puntos de inflexión están relacionados con el
aumento de la temperatura promedio terrestre (Ritchie
et al., 2021). Por lo tanto, resulta relevante retomar un
modelo publicado anteriormente para estudiar los efectos
de las emisiones de carbono en el crecimiento de la biota
(i.e., el conjunto de organismos vivos en el modelo) y en
la temperatura promedio anual terrestre.

La información presentada en el art́ıculo se estructuró de
la siguiente manera. En la primera sección se presenta una
introducción y planteamiento del problema. En la segunda
sección se presenta una recapitulación general de los princi-
pios del modelo de ciclo de carbono. En la tercera sección
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formación del primer autor.

se presenta y justifica un modelo de dimensión reducida
obtenido a través de un argumento de perturbaciones
singulares. Finalmente, en la cuarta sección se presentan
las simulaciones numéricas, un análisis del espacio fase y
de los equilibrios del modelo. En los Apéndices A y B
se formulan las funciones y los parámetros planteados en
Svirezhev and von Bloh (1997) para el modelo y que son
utilizados en este trabajo para realizar las simulaciones
numéricas. La escala de tiempo del modelo se encuentra
en años [yr] y las unidades utilizadas que no pertenecen
al Sistema Internacional de Unidades son las utilizadas
comúnmente para describir estas magnitudes en las fuentes
consultadas.

2. MODELO DE CICLO DE CARBONO

2.1 Formulación del modelo

Bajo la premisa que todo el carbono del sistema climático
se encuentra alojado en la atmósfera y en la vegetación, el
modelo planteado por Svirezhev and von Bloh (1997) se
encuentra conformado por: (1) un modelo de intercambio
de enerǵıa, (2) un modelo de intercambio de masa, y (3)
un modelo de crecimiento de la biota en el planeta rep-
resentada por la vegetación. Se utiliza al carbono alojado
en la vegetación N [Gt], como la medida de su biomasa
y se relaciona su crecimiento con la tasa de cambio de la
temperatura anual promedio T [Ko/Co] del planeta y con
el carbono presente en la atmósfera C [Gt].

La ecuación que describe la tasa de cambio de la temper-
atura se basa en un modelo de intercambio de enerǵıa de
un planeta, utilizando los conceptos de albedo y emisividad
para modelar la enerǵıa absorbida y emitida por el planeta.
Con más precisión, el albedo α ∈ [0, 1] se define como la
magnitud adimensional que representa la proporción de luz
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que refleja la superficie de un cuerpo. De manera experi-
mental se ha mostrado la relación que el albedo presenta
con el color de las superficies (Betts and Ball, 1997), en
este caso correspondiendo al color verde caracteŕıstico de
la vegetación. En este caso, el albedo presenta t́ıpicamente
valores bajos, lo que se puede interpretar como una alta
capacidad de la vegetación para absorber la enerǵıa del sol.
Como en el planteamiento del problema no se encuentran
definidas otras superficies además de la vegetación, un
aumento en la vegetación implica una disminución en el
albedo (Svirezhev and von Bloh, 1996).

Como la biomasa de la vegetación depende del car-
bono N alojado en la vegetación, se formula la función
monótonamente decreciente α(N) : R+ → [αmin, αmax],
con 0 < αmin < αmax < 1, α(0) = αmax y α(N) → αmin

cuando N → ∞. Definiendo el parámetro S como la
enerǵıa proveniente del sol [W/m2], la enerǵıa absorbida
por la superficie del planeta se modela por la función
ψ(N) = S(1− α(N)).

Por otro lado, la emisividad es una magnitud adimensional
que determina la efectividad de un cuerpo para emitir
enerǵıa como radiación térmica. La emisividad del planeta
se encuentra relacionada con la concentración de carbono y
otros gases en la atmósfera a través del efecto invernadero,
el proceso en el que estos gases absorben parte de la
radiación térmica emitida por el planeta y la emiten hacia
la superficie de la tierra (Stocker, 2011). Por tanto, la
emisividad del planeta es una función decreciente de los
gases de efecto invernadero alojados en la atmósfera y
representados en el modelo por el carbono C. Definiendo
la función decreciente φ(C) : R+ → [φ∞, 1], con φ(0) = 1
y φ(C) → φ∞ para C → ∞. De la ley de Stephan-
Boltzmann, sabemos que la potencia emisiva de un cuerpo
negro ideal es Eb = σT 4 donde σ es la constante de
Stephan-Boltzmann [W/m2K4] y T es la temperatura
promedio anual del planeta [K]. Para un cuerpo gris, la
potencia emisiva depende de la emisividad φ del cuerpo, de
ah́ı que la potencia emisiva del planeta es Eg = σφ(C)T 4.
Definiendo a k como la capacidad caloŕıfica de la superficie
del planeta [J/m2K], balance de enerǵıa implica que la
cantidad de calor acumulada en la superficie es

kṪ = ψ(N)− σφ(C)T 4, (1)

véase Stocker (2011).

La dinámica de la vegetación se describe por un modelo
de crecimiento de biomasa, con la peculiaridad de que esta
se encuentra cuantificada por la cantidad de carbono en la
vegetación. El crecimiento del carbono en la vegetación N
depende del carbono atmosférico C, de la temperatura T
y del carbono en la vegetación N y es modelado por la
función

P (N,C, T ) = PmgT (T )gN (N)gC(C). (2)

El parámetro Pm [Gt/year] representa la máxima pro-
ducción anual de vegetación por año. De acuerdo con el
principio de Leibig (Sinclair and Park, 1993), la función
de crecimiento P (N,T,C) tiene una forma multiplicativa
dependiente de los tres estados del modelo. A diferencia
de modelos de crecimiento de vegetación definidos por
una función de varias variables (Cox et al., 2004), la pre-
sentación en forma multiplicativa utilizada en (2) permite
modelar de manera sencilla la dependencia que presenta
el crecimiento de la vegetación en todas las variables. Se

define el siguiente comportamiento para las funciones de
crecimiento: gT (T ) : R → [0, 1] modela el efecto de la
temperatura, gN (N) : R+ → [0, 1] modela el efecto de
la vegetación, y gC(C) : R+ → [0, csat] modela el efecto
del carbono con csat < 1 un parámetro de saturación. El
modelo de crecimiento de vegetación está dado por

Ṅ = PmgT (T )gN (N)gC(C)−mN, (3)

el parámetro m [yr−1] es la tasa de eliminación anual de
la vegetación (i.e., mortalidad). Denominando como u a
las emisiones de carbón antropogénicas anuales y bajo la
premisa planteada inicialmente en el modelo de balance de
masa, la tasa de cambio del carbono atmosférico es

Ċ = −PmgT (T )gN (N)gC(C) +mN + u. (4)

Para simplificar el modelo, en Svirezhev and von Bloh
(1997) se define el carbono total contenido en el sistema

como A = C+N . Su derivada es Ȧ = Ṅ+ Ċ, por lo tanto,
de (3) y (4) esta expresión se reduce a Ȧ = u. La ecuación
(1) se puede formular en términos de la variable A como

kṪ = ψ(N)− σφ(A−N)T 4. (5)

El producto de las funciones gC(C)gN (N) se sustituye por
una función de dos variables G(A,N) : Dx → [0, 1], con

Dx = {(A,N)|A > 0, A ≥ N}. Las ecuaciones Ȧ = u, (3)
y (5) conforman el modelo de intercambio de carbono:

Ȧ = u,

Ṅ = Pmg(T )G(A,N)−mN,

kṪ = ψ(N)− σφ(A,N)T 4.

(6)

Las funciones que determinan el comportamiento de Ṅ y
Ṫ en (6) son continuamente diferenciables en el dominio
donde se encuentra definido el modelo. Estas funciones se
describen en el apéndice A.

En la Sección 4 se formulan distintos esquemas de emisión
para u y se analiza la respuesta del sistema en el plano fase.
Todas las simulaciones fueron realizadas con los valores
para los parámetros que fueron propuestos en el trabajo
donde se presentó el modelo originalmente (Svirezhev and
von Bloh, 1997). Estos valores se presentan en las tablas
B.1, B.2 y B.3 del apéndice B.

3. REDUCCIÓN DEL MODELO

3.1 Forma estándar de perturbaciones singulares

El modelo (6) presenta lo que se denomina como la forma
estándar del modelo de perturbaciones singulares:

ẋ = g1(t, x, z, ϵ) (7)

ϵż = g2(t, x, z, ϵ). (8)

En las ecuaciones (7), (8) se asume que el campo vectorial
g es diferenciable. Para el modelo (6) se tiene x ∈ R2, z ∈ R
y ϵ > 0. Al fijar el parámetro ϵ = 0, (8) se degenera en la
ecuación algebraica 0 = g2. Definiendo como z = h0(t, x)
a la ráız real de g2, se obtiene el modelo reducido

ẋ = g1(t, x, h
0(t, x), 0), (9)

con x = (A,N)T , z = T , y ϵ = k. Utilizando el
planteamiento descrito anteriormente es posible realizar
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una reducción en la dimensión de (6) de manera explicita
al fijar k = 0 obtenemos

0 = ψ(N)− σφ(A,N)T 4. (10)

La ecuación (10) tiene una ráız real para cada (A,N) ∈ Dx

dada por la expresión T := h0(A,N). De manera explicita

h0(A,N) =

(
ψ(N)

σφ(A,N)

)1/4

. (11)

Al sustituir (11) en (6) se obtiene el modelo reducido

Ȧ = u

Ṅ = PmG(A,N)g(h0(A,N))−mN.
(12)

El modelo (12) generalmente se denomina modelo de es-
tado cuasi-estacionario omodelo lento porque la velocidad
de Ṫ = g2/k puede ser muy grande cuando T ̸= 0
y la dinámica del modelo converge a una ráız de (10)
(Kokotovic et al., 1976). Como la variable T se excluyó
de (12) y se sustituyó por (11) en el modelo de estado
cuasi-estacionario, sólo es posible obtener la aproximación
T (t) = h0(t, A(t), N(t)). El planteamiento geométrico de
(12) se encuentra justificado en el teorema de la variedad
invariante de Fenichel (Jones, 2006).

3.2 Propiedades en la escala de tiempo

El modelo (6) se encuentra asociado a un comportamiento
caracterizado por dos escalas de tiempo. Al utilizar un
cambio de variable para el tiempo, τ = t/k, (6) se puede
reescribir como

dA

dτ
= ku,

dN

dτ
= k(PmgT (T )G(A,N)−mN),

dT

dτ
= ψ(N)− σφ(A,N)T 4.

(13)

La escala de tiempo dada por τ es rápida, mientras que
la escala de tiempo dada por t es lenta. Para k ̸= 0, el
comportamiento de este modelo es equivalente a (6); sin
embargo, ambos modelos presentan un comportamiento
distinto cuando k = 0. Es decir, para k = 0 en (13), dT/dτ
es distinta a cero mientras que las variables restantes se
mantienen constantes o en equilibrio:

dA

dτ
=
dN

dτ
= 0

dT

dτ
= ψ(N)− σφ(A,N)T 4.

(14)

Los equilibrios del modelo (14) son todos los puntos
del espacio fase que pertenecen a la superficie (11). En
contraste, cuando k = 0 en el modelo (6), se recuperan
(10) y (12). En otras palabras, todas las trayectorias
colapsan sobre el conjunto {A,N, h0(A,N)} y la dinámica

del modelo se encuentra descrita por Ȧ y Ṅ . En la figura 1
se observa que con u = 0 las trayectorias de (6) convergen
al conjunto {A,N, h0(A,N)} en el espacio fase.

3.3 Variedades invariantes hiperbólicas

La reducción del modelo se encuentra fundamentada en
las propiedades geométricas de los modelos (6) y (13).

Fig. 1. Espacio fase {A,N,T}. Para u = 0, las trayectorias
de (6) (en negro) convergen a una curva c̄N (en
azul) sobre la superficie h0(A,N). La curva c̄N es
difeomorfa a cN en el dominio Dx.

El conjunto de los puntos de equilibrio para (14) es
una superficie parametrizada por (A,N), que localmente
es difeomorfa a R2. Esta parametrización es una var-
iedad M0 = {(A,N, T ) : T = h0(A,N)} con h0(A,N)
definido en el dominio compacto (cerrado y acotado)
Dx ⊂ R2. Se dice que la variedad M0 es normalmente
hiperbólica si la linealización de (13) en cada punto deM0

tiene exactamente 2 valores propios en el eje imaginario
(Jones, 2006). La linealización Df de (14) sobre cualquier
(A,N, h0(A,N)) ∈M0 está dada por

Df =

 0 0 0
0 0 0

−φAψ
φ

φψN−ψφN

φ −4σφ(h0)3


y su polinomio caracteŕıstico es

det(λI −Df) = λ2(λ+ 4σφ(A,N)(h0(A,N))3). (15)

Los valores propios de (15) son λ1 = λ2 = 0 y λ3 =
−4σφ(A,N)(h0(A,N))3. Se define el concepto de variedad
invariante utilizando la noción del flujo. Se denomina como
ϕt(x0) al flujo del campo vectorial sobre la condición inicial
x0 después de un tiempo t, es decir, x(t, x0) ≡ ϕt(x0)
(Wiggins, 2013). Se dice que un conjuntoM es localmente
invariante bajo el flujo de (13) si existe una vecindad V
de M tal que ninguna trayectoria puede abandonar M
sin abandonar V . En términos del flujo ϕt(x), el conjunto
de M es localmente invariante si para todo x ∈ M ,
ϕt(x) ⊂ V . El primer teorema de Fenichel proporciona
las condiciones suficientes para asegurar la convergencia
de las trayectorias de (6) a la variedad M0 y la existencia
de una variedad Mk que es una perturbación de M0:

Teorema [Fenichel]. Si ϵ > 0 es suficientemente pequeño,
existe una variedad Mϵ que se encuentra adentro de un
entorno O(ϵ) de M0 y es que es difeomorfa a M0. Además,
Mϵ es localmente invariante bajo el flujo de (13).

Este teorema puede ser reformulado en términos de la
parametrización del conjunto M0. Si k > 0 es suficiente-
mente pequeño, existe una función T = hk(A,N) definida
en el dominio compacto Dx, tal que la variedad

Mk = {(A,N, T ) : T = hk(A,N)} (16)
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es difeomorfa a M0 y es invariante bajo el flujo de (13).
Sustituyendo hk(A,N) en (13), se obtiene un conjunto
de ecuaciones para A y N desacopladas de la variable T .
Como x = (A,N) parametriza a la variedadMk, el sistema
resultante describe el flujo de (13) en Mk y está dado por

dA

dτ
= ku,

dN

dτ
= k(PmG(A,N)g(hk(A,N))−mN).

(17)

El modelo (17) se encuentra en una escala de tiempo
rápida, utilizando t = kτ se puede reformular en la escala
lenta como

dA

dt
= u,

dN

dt
= PmG(A,N)g(hk(A,N))−mN,

(18)

como hk(A,N) → h0(A,N) cuando k → 0, se recupera el
modelo (12).

4. SIMULACIONES NUMÉRICAS Y DIAGRAMAS DE
EQUILIBRIOS

4.1 Funciones de emisión

La entrada exógena u en la dinámica de (6) y (12) se
formula como una función de los estados del modelo e
independiente del tiempo que cumpla con la restricción
u ≥ 0. Utilizando esquemas sencillos de emisión, buscamos
realizar un análisis básico del comportamiento del modelo
en el plano fase al estudiar propiedades geométricas como
la existencia de los puntos de equilibrio o la determinación
de las cuencas de atracción para el modelo.

El esquema más simple de emisión se obtiene al fijar
u = 0 en (6) y (12). Para la condición inicial x0, cualquier
trayectoria de (6) (figura 1) converge a la trayectoria (12)
(figura 2). En la región del plano fase donde el modelo es
válido las trayectorias convergen a los conjuntos

cN1
= {(A,N)|N = 0},

cN2
= {(A,N)|PmN−1G(A,N)g(h0(A,N))−m = 0}.

(19)

Se define cN = cN1
∪ cN2

como la ceroclina de N para
el modelo (12). Dependiendo de la condición inicial x(t0)
cada trayectoria converge a uno de los dos conjuntos. El
conjunto cN1

corresponde al eje A y conforma una rama
de equilibrios estables, que de manera intuitiva se asocia
con la eliminación de la biota en el modelo (N = 0). El
conjunto cN2 está conformado por puntos de equilibrio
estables e inestables, de manera más espećıfica, es posible
reescribir cN2 como la relación F (A,N) = 0. Por el
teorema de la función impĺıcita sabemos que localmente,
para cualquier x0 = (A0, N0) se puede definir una función
N = f(A), tal que F (A, f(A)) = 0 siempre que FN (x0) ̸=
0. Se denominan como singulares a aquellos puntos xs tales
que F (xs) = FN (xs) = 0, (Golubitsky et al., 2012). En
particular, para cN2 existen dos puntos singulares xs1 =
(As1 , Ns1) y xs2 = (As1 , Ns1). Al eliminar estos puntos
singulares del conjunto cN , se obtienen dos conjuntos
conexos y disjuntos que pueden ser caracterizados al definir
a N como una función de A,

Fig. 2. Plano fase {A,N} del modelo reducido. Utilizando
u = 0, las trayectorias de (12) (en color negro)
convergen a cN1

∪cN2
(en azul). Se muestran las curvas

de nivel para h0(A,N).

F (A, f1(A)) = 0, el segmento superior de cN2
,

F (A, f2(A)) = 0, el segmento inferior de cN2 .

Las trayectorias que parten desde el interior de cN2
con-

vergen al conjunto F (A, f1(A)) = 0, el segmento superior
de cN2

que corresponde a la rama de equilibrios estables
para N ̸= 0. El segmento inferior F (A, f2(A)) corresponde
a la rama de equilibrios inestables. La curva azul sobre la
superficie h0(A,N) en la figura 1 es c̄N = {(A,N, T ) :

T = h0(A,N)} ∩ {(A,N, T ) : Ṅ = 0}. En otras palabras,
observamos que, como la superficie h0(A,N) es difeomorfa
al semiplano {(A,N)|A > 0, A ≥ N}, las curvas c̄N y cN
son difeomorfas.

Si se considera al carbono total A (por consecuencia
también al carbono atmosférico C) como un parámetro

para Ṅ , es posible interpretar a cN como un diagrama de
bifurcación en el que existen tres ramas de equilibrios, dos
ramas estables (cN1

y F (A, f1(A))), una rama inestable
(F (A, f2(A))) y dos puntos de bifurcación (xs1 y xs2).
Para xs1 el número de puntos de equilibrio de (12) cambia
de uno a tres (dos equilibrios estables y un equilibrio
inestable) y para xs2 el número de equilibrios otra vez
cambia de tres a uno. En la figura 2 se muestra la ceroclina
de N (en azul), los puntos singulares xs1 y xs2 y las
curvas de nivel de (11) para distintos valores de T . Es
posible caracterizar al punto singular xs2 como un punto
de inflexión para (12), debido a que cuando una trayectoria
avanza más allá de xs2 converge a cN1

y no es posible
regresar al modelo a un estado en el que N > 0.

4.2 Emisión proporcional

Para estudiar algunas propiedades de (12), como la exis-
tencia de cuencas de atracción y separatrices o el com-
portamiento de los puntos de equilibrio, se formula un
esquema de emisión idealizado en el que las emisiones son
reguladas a ser proporcionales a la desviación entre un
valor deseado para la temperatura Td y el valor real del
modelo

u = Td − h0(A,N). (20)
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La ecuación (20) puede considerarse como un esquema
proporcional con ganancia unitaria. Se define como cA a
la ceroclina de A, en la figura 3 se muestra cN , además
de las curvas de nivel para distintos valores de T . En
particular, la curva de nivel para T = 15 mostrada en
verde corresponde al conjunto cA para un Td ≈ 15 Co. Se
denomina como x∗3 al punto de equilibrio generado por la
intersección de cA con cN1

y como x∗2 y x∗1 a los puntos de
equilibrio generados por la intersección entre cA y cN2

.

Los valores propios de la linealización de (12) sobre los
tres puntos de equilibrio tienen una parte real diferente
de cero, de ah́ı que se denominen como hiperbólicos y que
su estabilidad pueda ser determinada por su linealización
en una vecindad alrededor de ellos, (Wiggins, 2013). Se
concluye que x∗1 y x∗3 son puntos de equilibrio estables y
x∗2 es un punto de equilibrio inestable.

4.3 Cuencas de atracción y formulación alterna para la
emisión proporcional

Como x∗2 es un punto silla, Df(x∗2) presenta un valor
propio con parte positiva y otro con parte real negativa.
Denominando como v1 al vector propio que corresponde
al valor propio con parte real positiva y como v2 al vector
propio que corresponde al valor propio con parte real neg-
ativa, los subespacios lineales de x∗2 son respectivamente
Eu = span{v1} y Es = span{v2}. Para el punto de
equilibrio inestable hiperbólico x∗2, existe una superficie
Wu
loc(x

∗
2) tangente a Eu en x = x∗2 y una superficie

W s
loc(x

∗
2) tangente a E

s en x = x∗2 con la propiedad de que
las trayectorias de los puntos sobre Wu

loc(x
∗
2) se aproximan

a x(t0) asintóticamente en tiempo negativo (t → −∞) y
las trayectorias sobre los puntos de W s

loc(x
∗
2) se acercan

asintóticamente a x(t0) en tiempo positivo (t→ ∞).

W s
loc(x

∗
2) y W

u
loc(x

∗
2) son las variedades estable e inestable

respectivamente de x∗2, (Wiggins, 2013). La variedad es-
tableWS

loc(x
∗
2) se denomina separatriz y posee la propiedad

de que divide al espacio fase en las cuencas de atracción
para el punto de equilibrio estable x∗1 asociado a la pres-
encia de la vegetación (A,N > 0), mientras que el punto
de equilibrio estable x∗3 se asocia con la eliminación de la
vegetación en el modelo (A,N = 0). La variedad WS

loc(x
∗
2)

se muestra en rojo en la figura 3 además de los puntos de
equilibrio x∗2 y x∗1 para un Td ≈ 15Co. Como consecuencia
de la diferencia en las escalas de tiempo entre las variables
A y N , para el punto de equilibrio x∗3 se tiene que la
coordenada A es mayor que el rango de los ejes y x∗3 no
aparece en la figura 3.

El conjunto cA divide al semiplano A ≥ N en dos regiones
I = {(A,N)|Td > h0(A,N)} y II = {(A,N)|h0(A,N) >
Td}. Considerando la restricción u ≥ 0, el esquema de
emisión planteado en (20) solo es válido en la región I. De
ah́ı que se reformule u como

u = max{0, Td − h0(A,N)}. (21)

Este modelo se basa en el planteamiento de apagar las
emisiones para ciertas regiones del plano fase. Las trayec-
torias para (21) y la variedad WS

loc(x
∗
2) se muestran en la

figura 3. Las trayectorias que parten de la región I y que
no cruzan cA pueden converger a los puntos de equilibrio
estables x∗1 o x

∗
3, dependiendo de si la condición inicial x(0)
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Fig. 3. Plano fase {A,N} del modelo reducido con u =
max{0, Td − h0(A,N)}. La separatriz W s

loc(x
∗
2) (en

color rojo) divide las cuencas de atracción para x∗1
y x∗3. Las trayectorias (en color negro) convergen a
los puntos de equilibrio o a cN1

∪ cN2
.

pertenece a cualquiera de las dos cuencas de atracción. Las
trayectorias que parten de I y que cruzan c1 convergen
al conjunto cN2

. Para la región II se define u = 0. Las
trayectorias que no cruzan cA convergen al conjunto cN2

mientras que las trayectorias que cruzan cA convergen a
x∗3. Las curvas de nivel de h0(A,N) en las figuras 2 y 3
nos permiten visualizar que para cada punto de equilibrio
estable de cN2

se encuentra asociado un valor de T , que
corresponde a T = h0(A,N).

De manera intuitiva, se observa que conforme el valor de T
crece, la curva de nivel se desplaza sobre cN2

. Cuando no
existe una intersección entre alguna de las curvas de nivel
y el conjunto cN2

las trayectorias del sistema convergen
hacia el conjunto cN1

, una condición indeseable ya que
implica una desaparición de la biota en el modelo (el eje
N = 0).

El conjunto cN resulta fundamental para entender el com-
portamiento del modelo de manera independiente de la
función de emisión planteada. La presencia de puntos sin-
gulares en el conjunto, caracteŕıstica presente en muchos
modelos climáticos, genera que en una región cercana a
xs2 , un cambio gradual en A genera una atracción de la
trayectoria del modelo hacia N = 0.

5. CONCLUSIONES

Las emisiones antropogénicas de carbono son un fenómeno
complejo, sin embargo este primer acercamiento nos per-
mitió caracterizar algunas propiedades estructurales sen-
cillas de los modelos ecológicos. En la fuente que se tomó
como referencia principal, los parámetros utilizados en la
simulación fueron obtenidos haciendo suposiciones acerca
de los puntos de equilibrio de las variables. Este enfoque
no contradice nuestro objetivo, por lo tanto los parámetros
y las funciones utilizadas no fueron modificadas. Sin em-
bargo, resulta útil generar un planeamiento orientado a
explorar herramientas para cuantificar la desviación de los
datos generados por el modelo y los datos reales, además de
estudiar en qué medida es posible corregir esa desviación
al actualizar estos parámetros a través de otras técnicas.
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Apéndice A. FUNCIONES

Se presentan las variables y las funciones definidas en
Svirezhev and von Bloh (1997) para el modelo climático.

A.1 Variables

Tabla A.1. Variables en el modelo de ciclo de
carbono

Śımbolo Definición Unidad

N Carbono en la vegetación Gt
C Carbono en la atmósfera Gt
A Carbono total en el planeta A+N Gt
T Temperatura anual promedio Ko/Co

A.2 Modelo de intercambio de enerǵıa

• Función de albedo α(N) : R+ → [αmin, αmax], con
0 < αmin < αmax < 1, con α(0) = αmax y α(N) →
αmin para N → ∞.

α(N) =
α1kα + α2N

kα +N
, (A.1)

• Función de absorción de enerǵıa ψ(N) : S(1−α(N)).
Se define s1 = S(1− α1), s2 = S(1− α2).
ψ(N) : R+ → [s1, s2], con s2 > s1.

ψ(N) =
kαs1 + s2N

kα +N
, (A.2)

ψ(0) = s1 con ψ(N) → s2 cuando N → ∞.
• Función de emisividad φ(A,N). φ(A,N) : Dx →
[φ∞, 1]. Con φ(A,A) = 1 y φ(A,N) → φ∞ para
A >> N .

φ(A,N) =
kC + φ∞(A−N)

kC + (A−N)
(A.3)

con Dx = {(A,N)|A > 0, A ≥ N}.

A.3 Modelo de crecimiento de biomasa

• Función de crecimiento de la vegetación con respecto
al carbono:

G(A,N) =
4

A2
N(A−N), (A.4)

• Función de crecimiento de la vegetación con respecto
a la temperatura:

g(T ) = max

{
0,

4

(∆T )2
(T − T1)(T2 − T )

}
, (A.5)

donde T1 es la temperatura mı́nima en la que puede
crecer la biota, T2 es la temperatura máxima y ∆T =
T2 − T1. La temperatura óptima de crecimiento es
Topt = (T1 + T2)/2, g(Topt) = 1.

Apéndice B. UNIDADES Y VALORES DE LOS
PARÁMETROS

Tabla B.1. Modelo de intercambio de enerǵıa:
Constantes f́ısicas

Śımbolo Valor Unidad

k 3.1536× 107 J/m2K
S 342 W/m2

σ∗ 5.67× 10−8 W/m2K4

*En el trabajo original se utiliza una aproximación σ′′ =
4.68×10−8 W/m2K4 para compensar la ausencia de vapor
de agua en los gases de invernadero.

Tabla B.2. Modelo de intercambio de enerǵıa

Definición Śımbolo Valor Unidad

Albedo máximo, N = 0 αmax 0.4 au
Albedo mı́nimo, N = 0 αmin 0.1 au

Parámetro auxiliar en φ(C) kc 600 Gt
Emisividad mı́nima, C → ∞ φ∞ 0.6 au

Valor de referencia, T Td 288.5 Ko

Parámetro auxiliar en α(N) kα 750 Gt

Tabla B.3. Modelo de crecimiento de veg-
etación

Definición Śımbolo Valor Unidad

Tasa de muerte, N m 0.06 yr−1

Máxima producción, N Pm 80 Gt/yr
Limite superior de T T2 313 Ko

Limite inferior de T T1 278 Ko
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