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Abstract: A global continuous control scheme for the finite-time or (local) exponential
stabilization of robot manipulators with bounded inputs is developed involving desired gravity
compensation. With respect to the on-line compensation case, the proposed controller entails a
more complex closed-loop analysis, whence more involved requirements arise. Other important
analytical limitations are further overcome through the developed algorithm. Computer
simulations considering a robotic arm model corroborate the efficiency of the proposed
controller.
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1. INTRODUCTION

A global continuous state-feedback scheme for the finite-
time and exponential stabilization of mechanical/robotic
systems with bounded inputs was developed and thor-
oughly motivated in (Zavala-Ŕıo and Zamora-Gómez,
2017). The explicit consideration of input constraints
and the explicit choice on the system trajectory con-
vergence are among the main characteristics that dis-
tinguish such an approach from continuous finite-time
controllers developed for mechanical/robotic systems be-
fore its appearance: (Hong et al., 2002; Zhao et al.,
2010; Sanyal and Bohn, 2015) (see for instance (Zavala-
Ŕıo and Zamora-Gómez, 2017, §1) for a brief descrip-
tion of such works). Moreover, while the cited previous
approaches mainly rely on the dynamic inversion tech-
nique (except for one of the two controllers presented
in (Hong et al., 2002)), the scheme in (Zavala-Ŕıo and
Zamora-Gómez, 2017) benefits from the inherent passive
nature of mechanical systems. This is so in view of its
(saturating) Proportional-Derivative type structure with
exclusive compensation of the conservative-force (vector)
term, which permits to reshape the closed-loop potential
energy so as to set the desired posture as the only equi-
librium position on the whole configuration space. The
exclusive compensation of the conservative-force term

? The authors were supported by CONACYT, Mexico; second au-
thor: grant number CB-2014-01-239833; fourth author: CONACYT
projet 134534 and TecNM project.

allows to reduce the system model dependence of the
designed scheme, consequently simplifying the control
structure and decreasing the implied computation bur-
den. However, such advantages could still be improved if
the on-line compensation term could be replaced by the
conservative-force/gravity term evaluated at the desired
position. This idea was first introduced in (Takegaki and
Arimoto, 1981) in an unconstrained-input conventional
(infinite-time) stabilization framework and, since then, it
has been well appreciated due to its simplicity and sim-
plification improvements. This is the main motivation of
this work, where a desired-gravity-compensation extension
of the finite-time/exponential stabilization scheme from
(Zavala-Ŕıo and Zamora-Gómez, 2017) is developed. Such
a design task is not as simple or direct as a simple replace-
ment of the on-line compensation term by the desired
one, since the required (desired) closed-loop equilibrium
position is kept, but not its uniqueness. Consequently,
further design requirements prove to be needed to en-
sure that the control-induced potential energy component
dominates the open-loop one (in order to solve the unique-
ness issue). This was already pointed out in (Takegaki
and Arimoto, 1981), where such a domination goal was
shown to be achieved through a P control (vector) term
with a stronger growing rate than that of the open-
loop conservative force term in any direction (at every
point) on the configuration space; in particular, under the
simple consideration of uncoupled linear P and D control
actions, this was shown to be achieved by simply fixing
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P gains higher than the highest (induced) norm value
of the Jacobian matrix of the conservative force term
(assuming that such a Jacobian matrix is bounded). But
the solution of the referred uniqueness issue cannot be
that simple in the analytical context considered here in
view of the special functions involved to guarantee the
achievement of the formulated stabilization goal. This
represents an important analytical challenge to which
this work succeeds to give a suitable solution for robot
manipulators with bounded inputs. The desired-gravity-
compensation developed approach implies an important
simplification on the control implementation with respect
to the on-line compensation version. Its efficiency is fur-
ther corroborated through simulation results.

2. PRELIMINARIES

Let X ∈ Rm×n and y ∈ Rn. Xij stands for the element
of X at its ith row and jth column, Xi for the ith row
of X and yi for the ith element of y. With m = n,
X > 0 denotes that X is positive definite; for a symmetric
matrix X, λm(X) and λM (X) respectively stand for its
minimum and maximum eigenvalues. As conventionally,
for sets A and B, A \B represents the subset of elements
that are in A and are not in B. 0n represents the origin
of Rn and In the n × n identity matrix. Rn>0 and Rn≥0
denote the set of n-tuples with positive and non-negative
entries, respectively. ‖·‖ stands for the standard Euclidean
norm for vectors and induced norm for matrices. Let
Sn−1c = {x ∈ Rn : ‖x‖ = c}: an (n−1)-dimensional sphere
of radius c > 0 on Rn. We denote Dgf the directional
derivative of f : Rn → R along g : Rn → Rn, i.e.,
Dgf(x) = ∂f

∂xg(x). We consider the sign function sign(·)
to be zero at zero, and sat(ς) = sign(ς)min{|ς|, 1}.

2.1 Robot manipulators

Consider the n-degree-of-freedom (DOF) fully-actuated
robot manipulator dynamics

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are the position (generalized coor-
dinates), velocity, and acceleration vectors; the inertial
matrix H(q) ∈ Rn×n is a continuously differentiable
positive definite symmetric matrix function, such that
H(q) ≥ µmIn, ∀q ∈ Rn, for some µm > 0; the Coriolis
and centrifugal effect matrix C(q, q̇) ∈ Rn×n, defined
through the Christoffel symbols of the first kind, satisfies
Ḣ(q, q̇) = C(q, q̇)+CT (q, q̇), ∀q, q̇ ∈ Rn, and consequently

zT
[

1

2
Ḣ(x, y)− C(x, y)

]
z = 0 (2a)

∀x, y, z ∈ Rn, where Ḣ : Rn × Rn → Rn×n, with

Ḣij(q, q̇) =
∂Hij

∂q (q)q̇, i, j = 1, . . . , n,

‖C(x, y)‖ ≤ ψ(x)‖y‖ (2b)

for some ψ : Rn → R≥0, and C(x, y)z = C(x, z)y,
∀x, y, z ∈ Rn, whence we have that

C(q, aq̇)bq̇ = C(q, bq̇)aq̇ = C(q, abq̇)q̇ = C(q, q̇)abq̇ (3)

∀q, q̇ ∈ Rn, ∀a, b ∈ R; g(q) = ∇Uol(q), with Uol : Rn → R
being the potential energy due to gravity, or equivalently
Uol(q) = Uol(q0) +

∫ q
q0
gT (z)dz, for any q, q0 ∈ Rn; and

τ ∈ Rn is the external input (generalized) force vector.

We consider the (realistic) bounded input case, where
each input τi is constrained by a saturation bound Ti > 0.
More precisely, letting ui represent the control variable
(controller output) relative to the ith degree of freedom,
we have that

τi = Tisat(ui/Ti) (4)

Assumption 2.1. H(q) is bounded, i.e. ‖H(q)‖ ≤ µM ,
∀q ∈ Rn, for some µM ≥ µm > 0.

Assumption 2.2. ψ(·) in (2b) is bounded and conse-
quently ‖C(x, y)‖ ≤ kC‖y‖, ∀x, y ∈ Rn, for some kC ≥ 0.

Assumption 2.3. The gravity force vector is a con-
tinuously differentiable bounded vector function with
bounded Jacobian matrix ∂g

∂q , or equivalently: |gi(q)| ≤
Bgi, ∀q ∈ Rn, for some non-negative constant Bgi;∥∥∥∂g∂q (q)

∥∥∥ ≤ kg, ∀q ∈ Rn, for some non-negative con-

stant kg, and consequently ‖g(x) − g(y)‖ ≤ kg‖x − y‖,
∀x, y ∈ Rn.

Assumption 2.4. Ti > ηBgi, i = 1, . . . , n, with η ≥ 1.

Assumptions 2.1–2.3 apply e.g. for robots having only
revolute joints (Kelly et al., 2005, §4.3).

2.2 Local homogeneity, finite-time/δ-exponential stability

This work is developed within the analytical framework
of local homogeneity (Zavala-Ŕıo and Fantoni, 2014),
which states a formal analytical platform permitting
to handle vector fields with bounded components. Def-
initions and results in such an analytical context are
strongly related to family of dilations δrε , defined as

δrε(x) =
(
εr1x1, . . . , ε

rnxn
)T

, ∀x ∈ Rn, ∀ε > 0, with r =

(r1, . . . , rn)T , where the dilation coefficients r1, . . . , rn are
positive scalars. Other fundamental concepts involved in
the analytical context underlying this work are those
of homogeneous norm —with respect to the family of
dilations δrε , or simply r-homogeneous norm: a positive
definite continuous function being r-homogeneous of de-
gree 1— (Zavala-Ŕıo and Zamora-Gómez, 2017), denoted
‖ · ‖r, and r-homogeneous (n− 1)-sphere of radius c > 0:
Sn−1r,c = {x ∈ Rn : ‖x‖r = c}.
Consider an n-th order autonomous system

ẋ = f(x) (5)

where f is a vector field being continuous on an open
neighborhood of the origin D ⊂ Rn and such that f(0n) =
0n, and let x(t;x0) represent the system solution with
initial condition x(0;x0) = x0. An important definition
for this work is that of a finite-time stable equilibrium as
stated in (Bhat and Bernstein, 2005).

Remark 2.1. The origin is a globally finite-time stable
equilibrium of system (5) if and only if it is globally
asymptotically stable and finite-time stable. 4
Theorem 2.1. (Zavala-Ŕıo and Fantoni, 2014) Consider
system (5) with D = Rn. Suppose that f is a locally
r-homogeneous vector field of degree α with domain of
homogeneity D ⊂ Rn. Then, the origin is a globally finite-
time stable equilibrium of system (5) if and only if it is
globally asymptotically stable and α < 0.

An alternative stability concept proving to be compatible
to the framework of (local) homogeneity is that of δ-
exponential stability, whose definition is found for instance
in (Zavala-Ŕıo and Zamora-Gómez, 2017).
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Remark 2.2. If f in (5) is locally r-homogeneous of degree
α = 0 with dilation coefficients ri = r0, ∀i ∈ {1, . . . , n},
for some r0 > 0, then the origin turns out to be ex-
ponentially stable (in the standard sense (Khalil, 2002,
Definition 4.5)) if and only if it is δ-exponentially stable
(Zavala-Ŕıo and Zamora-Gómez, 2017, Remark 2.5). 4

Consider an n-th order autonomous system of the form

ẋ = f(x) + f̂(x) (6)

where f and f̂ are continuous vector fields on Rn such

that f(0n) = f̂(0n) = 0n.

Lemma 2.1. (Zavala-Ŕıo and Zamora-Gómez, 2017, Lemma
2.2) Suppose that, for some r ∈ Rn>0, f in (6) is a
locally r-homogeneous vector field of degree α < 0, resp.
α = 0, with domain of homogeneity D ⊂ Rn, and that 0n
is a globally asymptotically, resp. δ-exponentially, stable
equilibrium of ẋ = f(x). Then, the origin is a finite-time,
resp. δ-exponentially, stable equilibrium of system (6) if

lim
ε→0+

f̂i(δ
r
ε(x))

εα+ri
= 0

i = 1, . . . , n, ∀x ∈ Sn−1c , resp. ∀x ∈ Sn−1r,c , for some c > 0

such that Sn−1c ⊂ D, resp. Sn−1r,c ⊂ D.

Remark 2.3. The condition required by Lemma 2.1 may
be equivalently verified through the satisfaction of

lim
ε→0+

∥∥ε−αdiag
[
ε−r1 , . . . , ε−rn

]
f̂(δrε(x))

∥∥ = 0

∀x ∈ Sn−1c (resp. Sn−1r,c ). 4

2.3 Scalar functions with particular properties

Definition 2.1. A continuous scalar function σ : R → R
will be said to be:

(1) bounded —by M— if |σ(ς)| ≤ M , ∀ς ∈ R, for some
positive constant M ;

(2) strictly passive if ςσ(ς) > 0, ∀ς 6= 0;
(3) strongly passive if it is a strictly passive function

satisfying |σ(ς)| ≥ κ
∣∣a sat(ς/a)

∣∣b = κ
(

min{|ς|, a}
)b

,
∀ς ∈ R, for some positive constants κ, a and b.

Remark 2.4. Equivalent characterizations of strictly pas-
sive functions are: ςσ(ς) > 0 ⇐⇒ sign(ς)σ(ς) > 0 ⇐⇒
sign(σ(ς)) = sign(ς), ∀ς. 4
Lemma 2.2. (Zavala-Ŕıo and Zamora-Gómez, 2017, Lemma
2.3) Let σ : R → R, σ0 : R → R and σ1 : R → R be
strongly passive functions and k be a positive constant.
Then:

(1)
∫ ς
0
σ(kν)dν > 0, ∀ς 6= 0;

(2)
∫ ς
0
σ(kν)dν →∞ as |ς| → ∞;

(3) σ0 ◦ σ1 is strongly passive.

3. THE PROPOSED CONTROL SCHEME

Consider the Saturating-Proportional Saturating-Deriva-
tive type controller with desired gravity compensation
given as

u(q, q̇) = −s1(K1q̄)− s2(K2q̇) + g(qd) (7)

where q̄ = q − qd, for any constant (desired equi-
librium position) qd ∈ Rn; Ki = diag[ki1, . . . , kin],
i = 1, 2, are positive definite diagonal matrices —
i.e. Ki = diag[ki1, . . . , kin], kij > 0, i = 1, 2, j =

1, . . . , n— with K1 involved in an additional require-
ment stated below (through (9)); for any x ∈ Rn,

si(x) =
(
σi1(x1), . . . , σin(xn)

)T
, i = 1, 2, with, for each

j = 1, . . . , n, σij being non-decreasing strictly passive
functions, such that

Bj , max
{

lim
ς→∞

σ0j(ς) , lim
ς→−∞

−σ0j(ς)
}
< Tj−Bgj (8)

with σ0j(ς) = σ1j(ς)+σ2j(ς), both being locally Lipschitz-
continuous on R \ {0}; and with, for each j = 1, . . . , n,
k1j and σ1j additionally required to be such that, for all
ς ∈ R, ∣∣σ1j(k1jς)∣∣ > min

{
kg|ς| , 2Bgj

}
(9)

Remark 3.1. From the above formulation, we have that

2Bgj < |σ1j(k1jς)| ≤ Bj < Tj −Bgj
∀|ς| ≥ 2Bgj/kg, whence one sees that Assumption 2.4
with η = 3 is a necessary condition for the feasibility of
the simultaneous fulfilment of (8) and (9). 4
Remark 3.2. Inequality (9) implies the existence of con-

stants k̂1j > kg and bj > 2Bgj such that
∣∣σ1j(k1jς)∣∣ ≥

min
{
k̂1j |ς|, bj

}
> min

{
kg|ς|, 2Bgj

}
, ∀ς 6= 0. 4

Proposition 3.1. Consider system (1),(4) in closed loop
with the proposed control law (7), under Assumptions
2.1–2.3 and 2.4 with η = 3, and the above stated design
specifications. Thus, global asymptotic stability of the
closed-loop trivial solution q̄(t) ≡ 0n is guaranteed with
|τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0.

Proof. Observe that —for every j = 1, . . . , n— by (8),
we have that, for any (q, q̇) ∈ Rn × Rn and any qd ∈ Rn:
|uj(q, q̇)| ≤

∣∣σ1j(k1j q̄j) + σ2j(k2j q̇j)
∣∣ +

∣∣gj(qd)∣∣ ≤ Bj +
Bgj < Tj . From this and (4), one sees that Tj >
|uj(q, q̇)| = |uj | = |τj |, ∀(q, q̇) ∈ Rn × Rn, which shows
that, along the system trajectories, |τj(t)| = |uj(t)| < Tj ,
j = 1, . . . , n, ∀t ≥ 0. Hence, the closed-loop dynamics
takes the form

H(q)q̈ + C(q, q̇)q̇ + g(q) = −s1(K1q̄)− s2(K2q̇) + g(qd)

By defining x1 = q̄, x2 = q̇, and x = (xT1 , x
T
2 )T the closed-

loop dynamics adopts the form of (6) with

f(x) =

(
f(1)(x)
f(2)(x)

)
, f̂(x) =

(
f̂(1)(x)

f̂(2)(x)

)
(10)

where f(1)(x) = x2, f(2)(x) = −H−1(qd)
[
s1(K1x1) +

s2(K2x2)
]
, f̂(1)(x) = 0n, and

f̂(2)(x) = −H(x1 + qd)[C(x1 + qd, x2)x2 + g(x1 + qd)− g(qd)]

−H(x1)[s1(K1x1) + s2(K2x2)] (11)

with
H(x1) = H−1(x1 + qd)−H−1(qd) (12)

Thus, the closed-loop stability property stated through
Proposition 3.1 is corroborated by showing that x = 02n
is a globally asymptotically stable equilibrium of the state

equation ẋ = f(x) + f̂(x), which is proven through the
following theorem. 2

Theorem 3.1. Under the stated specifications, the origin
is a globally asymptotically stable equilibrium of ẋ =

f(x) + `f̂(x), ∀` ∈ {0, 1}, with f(x) and f̂(x) defined
through Eqs. (10).

Proof. For every ` ∈ {0, 1}, let us define the continuously
differentiable scalar function
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V`(x1, x2) =
1

2
xT2H(`x1 + qd)x2 + U`(x1) (13)

where

U`(x1) ,
∫ x1

0n

sT1 (K1z)dz + `U(x1) (14)∫ x1

0n
sT1 (K1z)dz =

∑n
j=1

∫ x1j

0
σ1j(k1jzj)dzj ,

U(x1) , Uol(x1 + qd)− Uol(qd)− gT (qd)x1 (15a)

=

∫ x1

0n

[
g(z + qd)− g(qd)

]T
dz (15b)

=

∫ x1

0n

[ ∫ z

0n

∂g

∂q
(z̄ + qd)dz̄

]T
dz (15c)

Observe from Eqs. (15) and Assumption 2.3 that

U(x1) ≤
∫ x1

0n

[ ∫ z

0n

∥∥∥∥∂g∂q (z̄ + qd)

∥∥∥∥dz̄]T dz
≤
∫ x1

0n

kgz
T dz =

n∑
j=1

∫ x1j

0

kgzjdzj (16)

∀x1 ∈ Rn (from (15c)), and simultaneously that

U(x1) ≤
n∑
j=1

∫ x1j

0

sign(zj)
∣∣gj(z + qd)− gj(qd)

∣∣dzj
≤

n∑
j=1

∫ x1j

0

sign(zj)2Bgjdzj

∀x1 ∈ Rn (from (15b)). From these inequalities, the
satisfaction of (9), and Remark 3.2, we have that

U`(x1) ≥
n∑

j=1

∫ x1j

0

sign(zj) min
{

(k̂1j − `kg)|zj | ,

(bj − 2`Bgj)
}
dzj

=

n∑
j=1

w`j(x1j) , S`(x1) (17a)

with

w`j(x1j) =

{
k̄`j

2
x21j if |x1j | ≤ b̄`j/k̄`j

b̄`j
[
|x1j | − b̄`j/(2k̄`j)

]
if |x1j | > b̄`j/k̄`j

(17b)

for some k̂1j > kg and bj > 2Bgj , and any positive

constants k̄`j ≤ k̂1j − `kg and b̄`j ≤ bj − 2`Bgj .

Remark 3.3. Note from expressions (17) that S`(x1), ` =
0, 1, are positive definite radially unbounded functions.
Observe further that (involving previous arguments and
Remark 2.4)

Dx1U`(x1) = xT1

[
s1(K1x1) + `

(
g(x1 + qd)− g(qd)

)]
≥

n∑
j=1

|x1j |
[∣∣σ1j(k1jx1j)

∣∣− `∣∣gj(x1 + qd)− gj(qd)
∣∣]

≥
n∑

j=1

|x1j |min
{
k̄`j |x1j | , b̄`j

}
> 0 (18)

∀x1 6= 0n, whence one sees that, for every ` = 0, 1,
∇x1
U`(x1) = s1(K1x1) + `

[
g(x1 + qd)− g(qd)

]
= 0n ⇐⇒

x1 = 0n 4

Thus, from Eqs. (13) and (17) and the properties of H(q)
we get that

V`(x1, x2) ≥ µm
2
‖x2‖2 + S`(x1) (19)

whence positive definiteness and radial unboundedness
of V`, ` = 0, 1, is concluded. Further, for every ` ∈
{0, 1}, the derivative of V` along the trajectories of ẋ =

f(x) + `f̂(x), is obtained as V̇`(x1, x2) = xT2H(`x1 +

qd)ẋ2 + `
2x

T
2 Ḣ(x1 + qd, x2)x2 +

[
s1(K1x1) + `[g(x1 +

qd) − g(qd)]
]T
ẋ1 = xT2

[
− `[C(x1 + qd, x2)x2 + g(x1 +

qd) − g(qd)] − s1(K1x1) − s2(K2x2)
]

+ `
2x

T
2 Ḣ(x1 +

qd, x2)x2 +
[
s1(K1x1) + `[g(x1 + qd) − g(qd)]

]T
x2 =

−xT2 s2(K2x2) = −
∑n
j=1 x2jσ2j(k2jx2j) where, in the

case of ` = 1, (2a) has been applied. Notice, from

the strictly passive character of σ2j , that V̇`(x1, x2) ≤
0, ∀(x1, x2) ∈ Rn × Rn, with Z` , {(x1, x2) ∈
Rn × Rn : V̇`(x1, x2) = 0} = {(x1, x2) ∈ Rn
× Rn : x2 = 0n}. Further, from the system dynamics

ẋ = f(x) + `f̂(x) —due to the positive definiteness of H
and Remark 3.3— one sees that x2(t) ≡ 0n =⇒ ẋ2(t) ≡
0n =⇒ s1(K1x1(t)) + `

[
g
(
x1(t) + qd

)
− g(qd)

]
≡ 0n

⇐⇒ x1(t) ≡ 0n (which shows that (x1, x2)(t) ≡
(0n, 0n) is the only system solution completely remain-
ing in Z`), and corroborates that at any (x1, x2) ∈
{(q̄, q̇) ∈ Z` : q̄ 6= 0n}, the resulting unbalanced force
terms act on the closed-loop dynamics

[
ẋ = f(x1, 0n) +

`f̂(x1, 0n) with (x1, x2) 6= (0n, 0n)
]
, forcing the system

trajectories to leave Z`, whence {(0n, 0n)} is concluded
to be the only invariant set in Z`, ` = 0, 1. Therefore, by
the invariance theory (Michel et al., 2008, §7.2), x = 02n is
concluded to be a globally asymptotically stable equilib-
rium of both the state equation ẋ = f(x) and the (closed-

loop) system ẋ = f(x) + f̂(x). 2

3.1 Finite-time/exponential stabilization

Proposition 3.2. Consider the proposed control scheme
under the additional consideration that, for every j =
1, . . . , n, σij , i = 1, 2, are locally ri-homogeneous of degree
αj = 2r2 − r1 —i.e. r1j = r1, r2j = r2 and α1j =
α2j = αj = 2r2 − r1 for all j = 1, . . . , n— with domain
of homogeneity Dij = {ς ∈ R : |ς| < Lij ∈ (0,∞]},
for some dilation coefficients ri > 0, i = 1, 2, such that
αj = 2r2 − r1 > 0 > r2 − r1. Thus, global finite-time
stability of the closed-loop trivial solution q̄(t) ≡ 0n is
guaranteed with |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n,
∀t ≥ 0.

Proof. Note that Proposition 3.1 holds and consequently
|τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0. Then, all
that remains to be proven is that the additional con-
siderations give rise to finite-time stabilization. In this
direction, let r̂i = (ri1, . . . , rin)T , i = 1, 2, r = (r̂T1 , r̂

T
2 )T ,

D , {(x1, x2) ∈ Rn × Rn : Kixi ∈ Di1 × · · · ×
Din , i = 1, 2} = {(x1, x2) ∈ Rn × Rn : |x1j | < L1j/k1j ,
|x2j | < L2j/k2j , j = 1, . . . , n}, and consider the previ-
ously defined state (vector) variables and the consequent

closed-loop state-space representation ẋ = f(x) + f̂(x),

with f and f̂ as defined through Eqs. (10). Since D
defines an open neighborhood of the origin, there exists
ρ > 0 such that Bρ , {x ∈ R2n : ‖x‖ < ρ} ⊂ D.
Moreover, for every x ∈ Bρ and all ε ∈ (0, 1], we have
that δrε(x) ∈ Bρ (since ‖δrε(x)‖ < ‖x‖, ∀ε ∈ (0, 1)), and,
for every j ∈ {1, . . . , n},
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fj(δ
r
ε(x)) = εr2jx2j = ε(r2−r1)+r1jfj(x)

fn+j(δ
r
ε(x)) = −H−1j (qd)

(
s1(εr1K1x1) + s2(εr2K2x2)

)
= −εα1H−1j (qd)

(
s1(K1x1) + s2(K2x2)

)
= ε(r2−r1)+r2jfn+j(x)

whence one sees that f is a locally r-homogeneous vector
field of degree α = r2 − r1, with domain of homogeneity
Bρ. Hence, by Theorems 2.1 and 3.1, the origin of ẋ =
f(x) is concluded to be a globally finite-time stable
equilibrium since r2 − r1 < 0. Thus, by Theorem 3.1,
Lemma 2.1, and Remarks 2.1 and 2.3, we conclude that

the origin of the closed-loop system ẋ = f(x) + f̂(x)
is a global finite-time stable equilibrium, provided that
r2 − r1 < 0, if

L0 , lim
ε→0+

∥∥∥ε−αδ−r̂2ε

(
f̂(2)(δ

r
ε(x))

)∥∥∥
= lim
ε→0+

∥∥∥ε−α−r2 f̂(2)(δrε(x))
∥∥∥

= lim
ε→0+

εr1−2r2
∥∥∥f̂(2)(δrε(x))

∥∥∥ = 0 (20)

for all x ∈ S2n−1
c = {x ∈ R2n : ‖x‖ = c}, for some c > 0

such that S2n−1
c ⊂ D. Hence, under the consideration of

(11) and (3), we have for all such x ∈ S2n−1
c :∥∥∥f̂(2)(δrε(x))

∥∥∥
≤
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)ε2r2x2

∥∥∥
+
∥∥∥H−1(εr1x1 + qd)

∥∥∥∥∥∥g(εr1x1 + qd)− g(qd)
∥∥∥

+
∥∥∥H(εr1x1)

[
εα1s1(K1x1) + εα2s2(K2x2)

]∥∥∥
≤ ε2r2

∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥
+
∥∥∥H−1(εr1x1 + qd)

∥∥∥kgεr1‖x1‖
+ ε2r2−r1

∥∥∥H(εr1x1)
∥∥∥ · ∥∥∥s1(K1x1) + s2(K2x2)

∥∥∥
and consequently, from (20) (recall that r1 > r2 > 0),

L0 ≤ lim
ε→0+

εr1
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥
+ kg‖x1‖ lim

ε→0+
ε2(r1−r2)

∥∥∥H−1(εr1x1 + qd)

∥∥∥
+ lim

ε→0+

∥∥∥H(εr1x1)

∥∥∥ · ∥∥∥s1(K1x1) + s2(K2x2)

∥∥∥
≤
∥∥H−1(qd)C(qd, x2)x2

∥∥ lim
ε→0+

εr1

+ kg‖x1‖
∥∥H−1(qd)

∥∥ lim
ε→0+

ε2(r1−r2)

+
∥∥s1(K1x1) + s2(K2x2)

∥∥ lim
ε→0+

∥∥H(εr1x1)
∥∥

≤
∥∥s1(K1x1) + s2(K2x2)

∥∥ · ∥∥H(0n)
∥∥ = 0

(21)

(note, from (12), that ‖H(0n)‖ = ‖H−1(qd)−H−1(qd)‖ =
0), which completes the proof. 2

Corollary 3.1. Consider the proposed control scheme tak-
ing σij , i = 1, 2, j = 1, . . . , n, such that

σij(ς) = sign(ς)|ς|βij ∀|ς| ≤ Lij ∈ (0,∞) (22)

with constants βij such that

0 < β1j ≤ 1 , β2j =
2β1j

1 + β1j
(23)

Thus, |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0, and the
closed-loop trivial solution q̄(t) ≡ 0n is:

(1) globally finite-time stable if 0 < β1 < 1;
(2) globally asymptotically stable and (locally) exponen-

tially stable if β1 = 1.

Item 1 of Corollary 3.1 is proven by corroborating that,
under the stated conditions, for every j = 1, . . . , n and
any r1 > 0, by taking r1j = r1 and r2j = r2 = (1 +
β1)r1/2, the requirements of Proposition 3.2 are satisfied
with 0 < β1 < 1 =⇒ r2 − r1 < 0 < 2r2 − r1. On
the other hand, note that with r2 = r1 —or analogously
β1 = 1 in the context of Corollary 3.1— we have that
εr2−r1 = 1, ∀ε > 0. Hence, in this case, developments
analog to those giving rise to inequalities (21) lead to
L0 ≤ kg‖x1‖‖H−1(qd)‖, and consequently, Lemma 2.1
(under the consideration of Remark 2.2) cannot be ap-
plied to conclude (local) exponential stability (contrarily
to the on-line conservative-force compensation case of
(Zavala-Ŕıo and Zamora-Gómez, 2017)). However, while
the global asymptotic stability follows from Proposition
3.1, the (local) exponential stability stated through item
2 of Corollary 3.1 is proven by showing that, for a suffi-
ciently small value of ε,

V2(x1, x2) = V1(x1, x2) + εxT1H(x1 + qd)x2
—with V1 as defined through Eq. (13)— is a suitable
strict Luapunov function of the closed-loop system, on
a neighborhood of the origin 02n. In particular, with

ε < min{ε1, ε2}

ε1 =

[
k̄1mµm

]1/2
µM

, ε2 =
k̄1mk2m

k̄1mkC%+ k̄1mµM + k22M/4

k̄1m = minj{k̄1j}, k2m = minj{k2j}, k2M = maxj{k2j},
k1M = maxj{k1j}, % = maxx1∈Q1

‖x1‖, Q1 = Q11 ∩
Q12, Q11 = {x1 ∈ Rn : |x1j | < b̄1j/k̄1j , j = 1, . . . , n},
Q12 = {x1 ∈ Rn : |x1j | ≤ L1j/k1j , j = 1, . . . , n},
Q2 = {x2 ∈ Rn : |x2j | ≤ L2j/k2j , j = 1, . . . , n},

Q1 =

(
k̄1m −εµM
−εµM µm

)
, Q2 =

(
k1M + kg εµM

εµM µM

)

Q3 =

(
εk̄1m −εk2M/2
−εk2M/2 k2m − εkC%− εµM

)
we have, on Q1 ×Q2, that

c1‖x‖2 ≤ V2(x) ≤ c2‖x‖2

V̇2(x) ≤ −c3‖x‖2
with c1 = λm(Q1)/2 > 0, c2 = λM (Q2)/2 > 0 and
c3 = λm(Q3) > 0, whence we conclude —by (Khalil, 2002,
Theorem 4.10)— that the origin (x1, x2) = (0n, 0n) is a
(locally) exponentially stable equilibrium of the closed-
loop system. The details omitted in this sketch of the
proof of Corollary 3.1 will be thoroughly developed in fu-
ture communications with more relaxed space limitations.

4. SIMULATION RESULTS

We implemented the proposed control scheme through
numerical simulations considering the 2-DOF revolute-
joint robot manipulator model used in (Zavala-Ŕıo and
Zamora-Gómez, 2017), characterized by

H(q) =

(
2.351 + 10.168 cos q2 0.102 + 0.084 cos q2

0.102 + 0.084 cos q2 0.102

)
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Fig. 1. Finite-time vs exponential stabilization

C(q, q̇) =

(−0.084q̇2 sin q2 −0.084(q̇1 + q̇2) sin q2

0.084q̇1 sin q2 0

)
g(q) =

(
38.465 sin q1 + 1.825 sin(q1 + q2)

1.825 sin(q1 + q2)

)
Assumptions 2.1–2.3 are thus satisfied (this is a direct
consequence of the revolute nature of both joints of the
considered manipulator); in particular Assumption 2.3
is fulfilled with Bg1 = 40.29 Nm, Bg2 = 1.825 Nm
and kg = 40.37 Nm/rad. Input saturation bounds are
T1 = 150 Nm and T2 = 15 Nm, whence Assumption 2.4
is corroborated to be fulfilled with η = 3. For the sake of
simplicity, units will be subsequently omitted.

The proposed design methodology was applied under the
consideration of the following function definitions

σu(ς;β, a) = sign(ς) max{|ς|β , a|ς|} (24a)

σb(ς;β, a,M) = sign(ς) min{|σu(ς;β, a)|,M} (24b)

for constants β > 0, a ∈ {0, 1}, and M > 0. Examples are
shown in (Zavala-Ŕıo and Zamora-Gómez, 2017, §5).

We present a simulation test focusing on the comparison
among the two types of convergence: finite-time vs expo-
nential. The implementation was run taking the desired

configuration at qd =
(
π/4 π/2

)T
[rad] and initial condi-

tions as q(0) = q̇(0) = 02. Based on the functions in Eqs.
(24), we define, for every j = 1, 2,

σij(ς) = σb(ς;βi, aij ,Mij) i = 1, 2 (25)

with aij = 0, i = 1, 2, j = 1, 2. Conditions on their
parameters under which (9) is fulfilled are:

k1j > kg(2Bgj)
(1−β1)/β1 (26a)

M1j > 2Bgj (26b)

Let us note, from the involved functions, as defined
through Eq. (25), that Bj = M1j+M2j , j = 1, 2 (see (8)).
Thus, by fixingM11 = 82,M21 = 18, andM12 = M22 = 6,
(8) and (26b) are simultaneously satisfied. The control
gain values were chosen taking care that inequality (26a)
was satisfied.

Figure 1 shows results obtained taking β1 = 1/2 and β2 =

2/3, and the control gains were taken, for both (finite-time
and exponential) controllers, as: K1 = diag[5000, 200] and
K2 = diag[150, 5]. One sees that the proposed scheme
achieves both types of convergence avoiding input sat-
uration, with the closed-loop trajectory arising through
the exponential controller presenting a longer and more
important transient. On the other hand, the finite-time
stabilizer shows a more efficient ability to counteract the
inertial effects through control signals with considerably
less and lower variations during the transient.

5. CONCLUSIONS

Global continuous control of robot manipulators with
input constraints guaranteeing finite-time or exponential
stabilization has been made possible and further simpli-
fied through desired gravity compensation. This controller
is not a simple extension of the on-line compensation case
but it has rather proven to need more involved require-
ments resulting from a closed-loop analysis with consider-
ably higher degree of complexity. Simulation results have
shown the actual ability of the proposed approach to guar-
antee the considered types of convergence avoiding input
saturation, with finite-time control signals giving rise to
less and lower variations during the transient. A more
detailed implementation test study focusing on further
aspects on the closed-loop performance is intended to be
presented on future communications with more relaxed
space restrictions.
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Sanyal, A.K., and Bohn, J. (2015). Finite-time stabili-
sation of simple mechanical systems using continuous
feedback. International Journal of Control, 88, 783–
791.

Takegaki, M. and Arimoto, S. (1981). A new feedback
method for dynamic control of manipulators. Journal
of Dynamic Systems, Meas. and Control, 103, 119–125.
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