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Abstract: Visual servoing incorporates visual information, from an external camera, in
feedback control loops for position and motion control of autonomous robot manipulators.
In practical implementations of these controllers, the intrinsic and extrinsic parameters of the
camera have to be a priori calibrated. In this work we deal with the uncalibrated visual servoing
problem. In particular, we report two new adaptive controllers that ensure that the tracking
error globally asymptotically converges to zero. One controller is the certainty equivalent
version of the known parameter controller, that requires some excitation conditions, and on
the second scheme we relax such excitation conditions but it, possibly, needs to inject some high
gain. The performance of the proposed controllers is illustrated with numerical simulations.
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1. INTRODUCTION

Visual servoing incorporates visual information, from
an external camera, in feedback control loops for posi-
tion and motion control of autonomous robot manipu-
lators that perform tasks in unstructured environments
(Hutchinson et al., 1996; Lizarralde et al., 2013; Wang
et al., 2010; Piepmeier et al., 2004; Wang, 2015). An
important, but tedious, issue in the practical applications
of visual servoing is the calibration of the intrinsic and ex-
trinsic parameters of the camera (Parra-Vega and Fierro-
Rojas, 2003; Wang, 2015). In this paper we consider
the problem of adaptive visual servoing of planar robot
manipulators under a fixed-camera configuration, where
the camera orientation and the image scale factor are
unknown. The control goals are to place the robot end-
effector in some desired constant position—or to make
it track a trajectory—by using a vision system equipped
with a fixed camera that is perpendicular to the plane
where the robot evolves.

In (Kelly, 1996) it was shown that a (fixed parameter)
PD-like controller ensures asymptotic set-point regulation
of the full robot dynamics in spite of the uncertainty
on the orientation parameter, which should however not
be greater than π

2 . It is well-known that the transient
performance of PD-like schemes can be improved, par-
ticularly in tracking applications, adding an adaptation
feature that has been, in particular, explored for camera
calibration. The design of these adaptive controllers is
unfortunately complicated because the unknown param-
eters enter nonlinearly into the system dynamics. One
way to bypass the nonlinearity obstacle is to overparame-
terize the system, which has the undesirable consequence
of increasing the number of parameters to be identified
and hampering the possibility of parameter convergence

(Sastry and Bodson, 1989). Several alternatives to avoid
overparameterization have been reported in the literature
but, to the best of the authors’ knowledge, the design of a
globally convergent adaptive controller remains an open
problem—the reader is referred to (Astolfi et al., 2008;
Zachi et al., 2006) for a review of these results.

In this paper we present two new, non-overparametrized,
adaptive controllers that ensure that the tracking error
globally asymptotically converges to zero. These con-
trollers rely on the use of the same parameter estima-
tor algorithm, which is derived introducing a new repa-
rameterization of the systems mathematical model, and
exploiting some structural properties of it, but they use
this estimates in a different way. The first controller is
the certainty equivalent version of the known parameter
controller, hence has a very simple structure. However,
to ensure global convergence, it requires some excitation
conditions that impose some constraints on the reference
trajectory. To relax the excitation assumption, a second
version of the controller—which is now slightly more com-
plicated and, possibly, needs to inject some high gain—
is given. The performance of the proposed controllers is
illustrated with numerical simulations.

2. PROBLEM FORMULATION

We consider an n-degrees of freedom (dof) robot ma-
nipulator that evolves in a plane, with n ≥ 2. The
vision system consists of a TV camera of CDD type
that is fixed perpendicular to the plane where the robot
evolves providing an image of the whole robot workspace,
what includes the robot end-effector and the target—
see Fig. 1. The image acquired by the camera supplies a
two-dimensional array of brightness values from a three-
dimensional scene.
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Fig. 1. Diagram of the visual servoing problem

Following the standard procedure Kelly (1996), we as-
sume that the image features are the projection into the
2D image plane of 3D points in the scene space, hence
we model the action of the camera as a static mapping
from the joint robot positions q ∈ R

n to the position
(in pixels) of the robot tip in the image output, denoted
y ∈ R

2. Such a mapping is described by

y = aeJθ(f(q) − ϑ1) + ϑ2, (1)

where θ ∈ D is is the orientation of the camera with
respect to the robot frame, ϑ1,ϑ2 ∈ R

2 and a > 0 are the
intrinsic camera parameters (scale factors, focal length
and centre offset, respectively). The function f : Rn 7→ R

2

is the robot direct kinematics and

J =

[

0 −1
1 0

]

, eJθ =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

.

From the direct kinematics we have that

ḟ =

[

∂f(q)

∂q

]⊤

q̇ =: J (q)q̇,

where J : Rn 7→ R
2×n is the Jacobian matrix, which we

assume is full rank. Differentiating (1) and replacing the
identity above we get ẏ = aeJθJ (q)q̇.

Invoking standard time-scale separation arguments and
assuming an inner fast loop for the robot velocity control,
we concentrate on the kinematic problem to generate the
references for the robot velocities. The robot dynamics
are then described by a simple integrator q̇ = τ , where
τ ∈ R

n represents the joint velocities references. Setting

τ = J⊤(q)
[

J (q)J ⊤(q)
]−1

u

where u ∈ R
2 is a new input to be designed yields

ẏ = aeJθu. (2)

Adaptive Calibration Problem. Given the vision
system (2), with measurable y, and a bounded target
trajectory y⋆(t) with known bounded derivative ẏ⋆(t).
Find a control signal u such that, in spite of the lack of
knowledge of a and θ, all signals remain bounded and

lim
t→∞

|ỹ(t)| = 0 (3)

where ỹ := y − y⋆ is the tracking error and | · | is the
Euclidean norm.

Moreover, we are also interested in ensuring that the
convergence of the tracking error happens in finite time.

That is, ensure the existence of T > 0 such that ỹ(t) = 0
for all t ≥ T .

3. CONTROLLER PARAMETERIZATION AND
PARAMETER ESTIMATOR

In spite of the simplicity of the system dynamics (2), the
task is complicated by its highly nonlinear dependence
on the unknown parameters. Note that if a and θ were
known, the ideal controller is given by

u⋆ =
1

a
e−Jθ (ẏ⋆ − λỹ) , (4)

with λ > 0. Resulting in the closed-loop system ˙̃y = −λỹ.
We make now the observation that the ideal controller (4)
can be written in the form

u⋆ =

[

η⊤

−η⊤J

]

(ẏ⋆ − λỹ) , (5)

where we defined the vector

η :=
1

a

[

cos(θ)
sin(θ)

]

. (6)

and used the fact that
1

a
e−Jθ =

[

η⊤

−η⊤J

]

. (7)

The key feature of the ideal controller parameterization
(5) is that it is linear in the unknown parameters η.

To estimate the parameters η we follow the input-error
formulation of adaptive control (Sastry and Bodson,
1989)—as opposed to the more classical output-error one.
Towards this end, we first rewrite (2) in the equivalent
form

u =

[

η⊤

−η⊤J

]

ẏ, (8)

where we have used the identity (7). Now, define the
following filtered signals

ẋ =− x+ y, x(0) = y(0)

v̇ =− v + u, v(0) = 0

z =− x+ y,

(9)

which are the state realizations of the linear time-
invariant (LTI) filters 1

z =
s

s+ 1
y, v =

1

s+ 1
u,

with some particular initial conditions, whose choice is
explained below.

Applying the filter 1
s+1 to (8) and using the definitions

above, we get the key input-error parameterization

v =

[

η⊤

−η⊤J

]

z. (10)

We underscore the fact that, because of the choice of
initial conditions in (9), the identity (10) holds true for
all t ≥ 0. 2

From (10), noting that

1

a
e−Jθ =

1

a
[cos(θ)I − sin(θ)J] =

[

η⊤

−η⊤J

]

1 With the standard abuse of notation, the Laplace transform
symbol s is used also to denote the derivative operator.
2 Otherwise, the identity holds true up to an additive, exponen-
tially decaying term—see Remark 1.
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and after some simple calculations, we see that
[

z⊤v

z⊤Jv

]

= |z|2η, (11)

where η is defined in (6). Since v and z are measurable
signals, (11) defines a linear regression for the unknown
parameters η, to which standard gradient-descent or
least-squares algorithm can be applied. For simplicity, in
the paper we consider the former estimator, namely

˙̂η = γ

([

z⊤v

z⊤Jv

]

− |z|2η̂

)

, (12)

where γ > 0 is an adaptation gain.

The estimator (12) verifies the following property.

Proposition 1. Consider the system (2) and the estimator
(12) with v, z generated via (9). Define the parameter
error vector η̃ := η̂ − η, where η is given in (6). For any
y(0) ∈ R

2 and any η̂(0) ∈ R
2 the following equivalence is

true:
z(t) /∈ L2 ⇐⇒ lim

t→∞
|η̃(t)| = 0, (13)

where L2 is the space of square-integrable functions.

Proof. Replacing (11) in (12) yields

˙̃η = −γ|z|2η̃. (14)

Thus

η̃(t) = e
−γ

∫

t

0

|z(τ)|2dτ
η̃(0), (15)

from which the proof is completed. ✷

Remark 1. One sense of the implication of Proposition
1 holds true for arbitrary initial condition on the filters
(9). Indeed, in this case, equation (10) becomes

v =

[

η⊤

−η⊤J

]

z+ εt,

where εt is an exponentially decaying term depending on
the system and filter initial conditions. The parameter
error equation (14), in its turn, becomes

˙̃η = −γ|z|2η̃ +

[

z⊤

z⊤J

]

εt.

Invoking Lemma 1 of the Appendix, whose proof is given
in (Aranovskiy et al., 2015), we can show that

z(t) /∈ L2 =⇒ lim
t→∞

|η̃(t)| = 0.

Notice that, in contrast with (13), the later is not an
equivalence anymore.

Remark 2. Imposing on z the condition of persistence
of excitation (PE), that is, existence of T > 0 and δ > 0
such that

∫ t+T

t

|z(τ)|2dτ > δ, ∀t ≥ 0,

the convergence of the parameter errors is exponential
(Sastry and Bodson, 1989). This rather strict condition
is, however, not required for our analysis. See (Aranovskiy
et al., 2017) for a discussion on the relation between non
square-integrability and PE of regressor signals.

4. MAIN RESULTS

This section presents our novel adaptive controllers that
solve the adaptive calibration problem. The first one
is the certainty equivalent version of (5), but relies on

parameter convergence hence, in view of (13), imposes
some excitation requirements on the closed-loop signals.
The second one, overcomes the latter assumption at the
prize of requiring a more complicated controller and,
possibly, needing to inject some high gain.

4.1 Controller relying on excitation

Proposition 2. Consider the system (2) in closed-loop
with the adaptive controller

u =

[

η̂⊤

−η̂⊤J

]

(ẏ⋆ − λỹ) , (16)

with (9) and (12). For any y(0) ∈ R
2 and any η̂(0) 6= 0

we have that (3) holds with all signals bounded provided
that z(t) /∈ L2.

Proof. Using (5) and (16) yields the closed-loop system

˙̃y =− λỹ + aeJθ(u− u⋆)

=− λỹ + aeJθ
[

(η̂ − η)⊤

(η − η̂)⊤J

]

(ẏ⋆ − λỹ)

=− λỹ + aeJθ
[

η̃⊤

−η̃⊤J

]

(ẏ⋆ − λỹ) .

(17)

Notice that η̃ is defined by (15) hence it is non-increasing,
bounded and, under the standing assumption on z, con-
verges to zero.

The closed-loop system (17) is a perturbed, linear time-
varying (LTV) system of the form

˙̃y = A(t)ỹ + b(t)

where

A(t) := λI− λaeJθ
[

η̃⊤

−η̃⊤J

]

b(t) := aeJθ
[

η̃⊤

−η̃⊤J

]

ẏ⋆.

We recall now that an LTV system ẋ = A(t)x, with
A(t) continuous, is globally asymptotically stable if the
eigenvalues of A(∞) exists and they have negative real
parts, Lemma 3.8 of (Tomas-Rodriguez and Banks, 2010).
Moreover, this property is preserved in the presence of an
asymptotically decaying additive perturbation. Applying
this lemma to the system (17) completes the proof. ✷

4.2 Controller with asymptotic convergence

To avoid the need of imposing an excitation assumption
on the signals of the system, which is difficult to verify
a priori, we propose in this subsection a new adaptive
controller. To streamline the presentation of the main
result we introduce the following assumption, which es-
sentially requires that y(t) is not a constant function—a
reasonable assumption in all practical scenarios.

Assumption 1. Fix a small constant µ ∈ (0, 1). There
exists a time tc > 0 such that

∫ tc

0

|z(τ)|2dτ ≥ −
1

γ
ln(1 − µ). (18)
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Proposition 3. Consider the system (2) in closed-loop
with the adaptive controller

u =

[

ℓ⊤

−ℓ⊤J

]

(ẏ⋆ − λỹ) , (19)

where

ℓ =
1

1− wc

(η̂ − wcη̂(0)) , (20)

with η̂ generated via (12), w is the solution of

ẇ = −γ|z|2w, w(0) = 1, (21)

and the clipped function wc is defined as

wc =

{

w if w < 1− µ
1− µ if w ≥ 1− µ,

(22)

with µ ∈ (0, 1) a small constant. If z(t) verifies Assump-
tion 1, then for all y(0) ∈ R

2 and all η̂(0) 6= 0, we have
that (3) holds with all signals bounded.

Proof. First, notice that the definition of wc in (22)
ensures the control law (19), (20) is well-defined. This,
together with the boundedness of η̂, ensure that trajec-
tories cannot escape in finite time. Now, from (15) and
(21) we have that

η̃ = wη̃(0).

Clearly, this is equivalent to

(1− w)η = η̂ − wη̂(0). (23)

On the other hand, under Assumption 1, we have that
wc(t) = w(t), ∀t ≥ tc.

Consequently, from (20) and (23) we conclude that ℓ(t) =
η, ∀t ≥ tc, and from (5) and (19) we get that

u(t) = u⋆(t), ∀t ≥ tc,

with u⋆ given in (5). Finally, since trajectories cannot
escape in finite time, this completes the proof. ✷

5. SIMULATIONS

The proposed adaptive schemes have been simulated for a
robot manipulator with 2-dof, whose kinematics is given
by

f(q) =

[

L1 cos(q1) + L2 cos(q1 + q2) +O1

L1 sin(q1) + L2 sin(q1 + q2) +O2

]

,

where L1 and L2 are the link lengths and O1, O2 are the
robot base coordinates. The Jacobian matrix is

J (q) =
[

−L1 sin(q1)− L2 sin(q1 + q2) −L2 sin(q1 + q2)
L1 cos(q1) + L2 cos(q1 + q2) L2 cos(q1 + q2)

]

The simulations have been carried-out in the same condi-
tions as in Astolfi et al. (2002). Hence, we set L1 = 0.8m,
L2 = 0.5m O1 = −0.666m and O2 = −0.333m. Further,
the orientation of the camera is set to θ = 1rad and the
scaling factor a = 0.7. This yields η = [0.7719, 1.2021]⊤.
The robot initial conditions are q(0) = 1.3[1, −1]⊤rad.

The desired trajectory y⋆(t) is obtained from the first
order system

ẏ⋆ = −α1(y⋆ + r), (24)

where r is the reference signal given by

r =

[

α2 sin(wrt) + α2 sin(1.5wrt) + c
α2 sin(wrt+ d) + α2 sin(1.5wrt+ d) + c

]

,

with y⋆(0) = [−0.5, 0.5]⊤, c = 0.1 and d = 1rad.
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Fig. 2. Simulation results for the controller relying on
excitation (16), with ẏ⋆ = 0.
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Fig. 3. Simulation results for the controller with asymp-
totic convergence (19) and with ẏ⋆ = 0.

It should be underscored that the immersion and in-
variance adaptive scheme in (Astolfi et al., 2002) has
a steady state error that increases when tracking high
frequency signals. Although in (Astolfi et al., 2002) the
simulations have been carried out with wr = 0.07rad/s
and α2 = 0.04, to show the performance improvement
of our proposal, here we set wr = 1rad/s and α2 = 0.4.
Moreover, compared to the works in (Hsu et al., 2015;
Yang et al., 2016), the schemes proposed here can deal
with constant desired trajectories and we can achieve
asymptotic convergence of the tracking error to zero.

For the controller (16) we selected γ = 1.5 and λ = 2,
with the same gains, plus µ = 0.05, for the controller
(19). These choices yield − 1

γ
ln(1− µ) = 0.0342.

The controllers have been simulated under the same
conditions and for two different scenarios, namely for a
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Fig. 4. Simulation results for the controller relying on
excitation (16), with ẏ⋆ 6= 0 and with wr = 1rad/s.
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Fig. 5. Simulation results for the controller with asymp-
totic convergence (19), with ẏ⋆ 6= 0 and with wr =
1rad/s.

constant desired trajectory, i.e., ẏ⋆ = 0, and for a time-
varying trajectory, i.e., ẏ⋆ as in (24), with α1 > 0.

The first set of simulations is for the constant desired
trajectory case, hence α1 = 0 in (24). In Fig. 2 we show
the behavior of the controller (16). Note that, as expected
because the lack of excitation, the estimation error does
not converge to zero. However, in spite of this fact,
position tracking is ensured. The behavior of controller
(19) is shown in Fig. 3. This scheme also ensures output
regulation with a faster transient than (16). Clearly,
signal z satisfies Assumption 1 with tc = 3.186 seconds.

The second set of simulations deal with the time-varying
trajectory, and hence we set α1 = 5 in (24). The results
are illustrated in Figs. 4 and 5. In this case, the desired
trajectory is rich enough to ensure z(t) /∈ L2 guaranteeing
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Fig. 6. Simulation results for the controller relying on
excitation (16), with ẏ⋆ 6= 0 and with wr = 2rad/s.

−0.5

0

0.5

1
y

0
0.2
0.4
0.6

|y
−

y
∗
|

0

2

4

|u
−

u
∗
|

1.47 10 20 30 40 50
0

5

10

T ime(s)

∫
t 0
|z
(τ

)|
2
d
τ

0 3
0

∫ t

0 |z(τ )|
2dτ= 0.342

tc = 1.47

tc = 1.47

Fig. 7. Simulation results for the controller with asymp-
totic convergence (19), with ẏ⋆ 6= 0 and with wr =
2rad/s.

that the estimation error converges to zero. Again, the
performance of controller (19) is better than the per-
formance of controller (16). Observe that the tracking
error converges around 4 seconds for controller (19), while
for controller (16) the convergence happens around 30
seconds. Furthermore, signal z satisfies Assumption 1
with tc = 1.72 seconds.

The third set of simulations aims at showing that, with
the same gain setting, when we increase the frequency of
the desired trajectory, from wr = 1rad/s to wr = 2rad/s,
both schemes ensure trajectory tracking but the perfor-
mance of controller (16) is deteriorated. However, for
controller (19), tc decreases and it tracks the trajectory
almost at the same time as with the previous case. These
conclusions can be verified in Figs. 6 and 7.
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6. CONCLUDING REMARKS AND FUTURE WORK

Using a novel parameterization of the camera action
mapping, and exploiting some structural properties of it,
we have developed new controllers that solve the visual
servoing problem for an uncalibrated camera. The first
controller is a standard certainty equivalence version of
the known parameter controller, on the other hand, the
second one uses in a novel way the estimates generated
by the parameter estimator, which is the same for both
controllers. Another difference between the controllers is
that, while the first one relies on excitation to ensure its
correct behavior, this requirement is obviated the second.
It is shown through simulations that the second controller
outperforms the other, both in regulation and tracking
scenarios.

Future research involves the inclusion of the robot dy-
namics and the extension to 3D scenarios.
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APPENDIX

Lemma 1. (Aranovskiy et al., 2015) Consider the scalar,
linear time-varying, system defined by ẋ = −a2(t)x+b(t),
where x ∈ R, a(t) and b(t) are piecewise continuous
functions. If a(t) 6∈ L2 and b(t) ∈ L1 then lim

t→∞
x(t) = 0.
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