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Raúl Rascón Carmona ∗ Misael Medina Barrera ∗
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∗ Facultad de Ingenieŕıa Mexicali, Universidad Autónoma de Baja
California (e-mail: raul.rascon{misael.medina,drosas}@uabc.edu.mx).
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Abstract: A dynamic feedback control law is presented to solve the tracking problem in
completely actuated mechanical systems of n degrees of freedom, this is achieved without
using velocity measurements nor observer/differentiator algorithms. Moreover viscous friction
can be compensated by the algorithm. Only position measurements are available for feedback,
by this way this new proposal do not require to measure or estimate another signal but the
position of the mechanical system in order to achieve the control objective. It is proved that
the equilibria set of the closed-loop system are globally asymptotically stable.
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1. INTRODUCTION

In many works related to tracking control design for
mechanical systems, the velocity state must be available
for feedback, this could be a disadvantage if there is not
a velocity sensor available, this situation can be solved
using a velocity observer or a differentiator, see Bartolini
et al. (2016); Gutiérrez-Giles and Arteaga-Pérez (2014);
Shtessel et al. (2014); Rosas et al. (2016) and references
therein. Due to this situation, the tracking problem of a
nonlinear dynamical system is more complex, since two
algorithms must be designed; the observer/differentiator
algorithm and the control law.

Many problems arise when an observer design is used,
such the gain tuning, not suitable transient response,
use of many computational resources, and they can be
complicated to implement. Also, because observers form
software control loops, they can become unstable under
certain conditions, see Ellis (2002). Also, it is necessary to
prove stability for the whole closed-loop system, including
the plant, observer and controller as a whole system.

There are some previous works about tracking control
in Lagrangian systems using only position feedback, see
for example Loria (2016) where is proposed a track-
ing controller for Lagrangian systems with arbitrarily
high relative degree; this includes underactuated sys-
tems, where instead of using velocity measurements they
used the dirty derivative as a replacement of unavailable
state measurements, hence obviating the use of observers.
In Romero et al. (2015) a solution to the problem of
global exponential tracking of mechanical systems with-

out velocity measurements is presented, the proposed
controller is obtained combining a redesign of the recently
reported exponentially stable immersion and invariance
velocity observer and a new state-feedback passivity-
based controller, which assigns to the closed-loop a port-
Hamiltonian structure with a desired energy function.
In Zhao et al. (2015) investigates the distributed finite-
time tracking problem of networked agents with multiple
Euler—Lagrange dynamics, where a distributed finite-
time protocol is first proposed on the basis of both relative
position and relative velocity measurements, the control
objective is achieved with the aid of second-order sliding-
mode observer approach. Some other previous works of
tracking control without using velocity measurements are
given in Loria (1996); Lizarralde and Wen (1996); Do
et al. (2003); Wang et al. (2010); Abdessameud and
Tayebi (2010), all of these works obviate the need for the
velocity using a filter, an observer or an estimator.

In this work, a dynamic feedback design is considered
in order to use only position data to solve the tracking
problem in mechanical systems, the result is extended
to nDOF (degrees of freedom) Lagrangian systems. The
main contribution of the present control approach is
that no velocity measurements are needed, neither an
observer design nor a differentiator in order to solve the
tracking problem in mechanical systems, moreover the
control algorithm has only three gain parameters which
are very simple to tune, they only must meet certain
conditions given in the document. Also, the controller
can compensate viscous and Coulomb friction without any
measurement or estimation of the velocity, although the
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friction magnitudes must be known with the purpose of
achieving the control objective.

In applications for fully actuated mechanical systems
the proposed control law provide the desired tracking
performance. A strict Lyapunov function will be used
to prove global asymptotic stability of the closed-loop
system, for further information about Lyapunov tools see
Orlov (2009).

The rest of the paper is organised as follows: In Section 2
is described the statement of the problem in second order
dynamical systems, which can be applied in mechanical
systems of one degree of freedom on either rotational
or translational links, also it is proposed the general
structure of the controller. The dynamic output feedback
design is presented in Section 3. In Section 4 is proved
the global asymptotic stability of the closed-loop system
using a strict Lyapunov function. The Section 5 presents
the controller extension to Lagrangian systems of nDOF
and its stability proof. Section 6 presents an application
in a X-Y translational mechanical system, where the
tracking problem was addressed. In Section 7 are given
some conclusions.

2. PROBLEM STATEMENT

The problem considered in this paper is to design a
tracking controller for mechanical systems using output
feedback, this is position measurements.

The dynamics of the second order mechanical systems
considered in this section are governed by the following
state space equations

ẋ = y

ẏ = f(x, t)− fvy + g(x, t)u
(1)

where f(x, t) and g(x, t) are nonlinear functions, being
g(x, t) invertible, fv is the amplitude of the viscous
friction. For system (1) the following control design is
proposed

u = −g(x, t)−1 (f(x, t)− τ − ẍd) (2)

where the first term is a compensation, τ is the proposed
algorithm, and ẍd is the second derivative of the desired
trajectory xd which is Ck, for a sufficiently large k.
Substituting (2) in (1) the remaining closed-loop system
stands as follows

ẋ = y

ẏ = −fvy + τ + ẍd.
(3)

Let us rewrite system (3) in function of the errors e1 = x−
xd and e2 = y − ẋd,

ė1 = e2

ė2 = −fv(e2 + ẋd) + τ
(4)

notice that the structure of (4) is a double integrator
system with viscous friction.

3. DYNAMIC CONTROL ALGORITHM

The proposed dynamic algorithm to stabilise the system
(4) is

τ = −k1e1 + k2e3 + fvẋd

ė3 = −k1e1 − k2e3
(5)

considering the gain parameters ki > 0, with i = 1, 2.
Substituting (5) in (4) the closed-loop system is

ė1 = e2

ė2 = −k1e1 + k2e3 − fve2
ė3 = −k1e1 − k2e3.

(6)

The equilibria of the closed-loop system (6) are given by
the set

(ē1, ē2, ē3) = (0, 0, 0) . (7)

4. STABILITY OF THE CLOSED-LOOP SYSTEM

The closed-loop system (6) is globally asymptotically
stable around the equilibria set ē = [ē1, ē2, ē3]T ∈ R3

given by (7), as long as the roots of the polynomial

s3 + (fv + k2)s2 + (fv + k1 + k2)s+ 2k1k2

have negative real part, notice that even in the absence
of friction the closed-loop system can be asymptotically
stable.

The above given polynomial is obtained from det (sI −Acl),
where Acl = [0 1 0;−k1 − fv k2;−k1 0 − k2] is get it
from (6).

5. EXTENSION TO NDOF LAGRANGIAN SYSTEMS

Consider a nDOF Lagrangian system described by

M(q)q̈ + C(q, q̇)q̇ + G(q) + Fv q̇ = τu (8)

where q ∈ Rn is the generalised position vector, M(q) is
the inertia matrix, C(q, q̇) is the centrifugal and Coriolis
forces matrix, G(q) is the gravitational force vector, Fv

is the matrix of viscous friction, and τu ∈ Rn is the
generalised force or torque input. Let us consider that
the measured variable is the generalised position q.

Defining the state variables x1 = q, x2 = q̇, the state-
space representation of system (8) is[
ẋ1

ẋ2

]
=

[
ẋ2

M−1(x1) [−C(x1, x2)x2 −G(x1)− Fvx2 + τu]

]

y = x1
(9)

where τu is the control input given by

τu = G(x1) + τc + M(x1)ẍ∗ (10)

x∗ = [xd1, . . . , xdn]T ∈ Rn is the vector of desired
trajectories, also ẋ∗, ẍ∗ ∈ Rn. Now defining z1 = x1 − x∗
and z2 = x2 − ẋ∗, the proposed controller that can be
applied to nDOF is

τc = −K1z1 + K2z3 + C(x1, ẋ
∗)ẋ∗

ż3 = −K1z1 −K2z3
(11)

where K1, K2 ∈ Rn×n are tunable gains matrices which
are diagonal positive definite. The closed-loop system
according to the variables z = [z1, z2, z3]T stands as
follows
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ż1 = z2

ż2 = −M−1(x1) [K1z1 −K2z3 + C(x1, x2)x2

−C(x1, ẋ
∗)ẋ∗ + Fvz2]

ż3 = −K1z1 −K2z3

(12)

according to the properties of the centrifugal and Coriolis
forces matrix presented in Section 4.2 of Kelly et al.
(2006), the following equivalence is valid

C(x1, x2)x2 = C(x1, z2 + ẋ∗)(z2 + ẋ∗)

= C(x1, z2)(z2 + ẋ∗) + C(x1, ẋ
∗)(z2 + ẋ∗)

= C(x1, z2)z2 + C(x1, z2)ẋ∗+
C(x1, ẋ

∗)z2 + C(x1, ẋ
∗)ẋ∗

= C(x1, z2)z2 + 2C(x1, ẋ
∗)z2 + C(x1, ẋ

∗)ẋ∗

(13)
substituting (13) into (12) give us

ż1 = z2

ż2 = −M−1(x1) [K1z1 −K2z3 + C(x1, z2)z2+

2C(x1, ẋ
∗)z2 + Fvz2]

ż3 = −K1z1 −K2z3.

(14)

The equilibria of the closed-loop system (14) are given by

(z̄1, z̄2, z̄3) = (0, 0, 0) . (15)

Now, for stability purposes let us use the following can-
didate Lyapunov function

V (z1, z2, z3) =
1

2
zT1 K1z1 − zT1 K2z3 +

1

2
zT2 M(x1)z2+

+
1

2
zT3 Iz3.

(16)
To show that the function defined in (16) is a positive-
definite function, and radially unbounded, let us proceed
to obtain the lower-bound of the function (16) as follows

V (z1, z2, z3) ≥

1

2

 ||z1||||z2||

||z3||

T  λmin{K1} 0 −λmax{K2}

0 λmin{M} 0

−λmax{K2} 0 1

 ||z1||||z2||

||z3||


(17)

the condition to keep V (z1, z2, z3) > 0 is

(1) λmin{K1} > λmax{K2}2.

Following similar steps as the developed above, it is
possible to show that the Lyapunov candidate function
V (z1, z2, z3) given in (16) is upper bounded by the fol-
lowing expression:

V (z1, z2, z3) ≤

1

2

 ||z1||||z2||

||z3||

T  λmax{K1} 0 −λmin{K2}

0 λmax{M} 0

−λmin{K2} 0 1

 ||z1||||z2||

||z3||


(18)

which is positive-definite and radially unbounded since
the condition

(1) λmax{K1} > λmin{K2}2.

is trivially satisfied, this means that V (z1, z2, z3) > 0 is a
positive definite and decrescent function. The derivative

of (16) along the solutions of (14) is given by

V̇ (z1, z2, z3) = zT1 K1z2 + zT2 M(x1)ż2 +
1

2
zT2 Ṁ(x1)z2

+zT3 Iż3 − zT2 K2z3 − zT1 K2ż3
(19)

using the skew-symmetric property 1
2Ṁ − C = 0 shown

in Section 4.2 of Kelly et al. (2006), the time derivative
of the Lyapunov candidate function yields

V̇ (z1, z2, z3) = −2zT2 C(x1, ẋ
∗)z2 − zT2 Fvz2 − zT3 K2z3

−zT1 K2K1z1 + zT1 K2
2z3 + zT3 K1z1.

(20)

Now, let us proceed to upper-bound V̇ (z1, z2, z3) by a
negative definite function in terms of the states z1, z2,
and z3. To that end, it is convenient to find upperbounds
for each term of (20). The first two terms of (20) may be
trivially bounded by

−2zT2 C(x1, ẋ
∗)z2 − zT2 Fvz2 ≤

2kc1||ẋ∗|| ||z2||2 − λmin{Fv}||z2||2
(21)

where the property of the centrifugal and coriolis ma-
trix ||C(x1, ẋ

∗)z2|| ≤ kc1||ẋ∗|| ||z2|| was used (for more
properties see chapter 4 in Kelly et al. (2006)), the terms
containing just z3 in (20) satisfies

−zT3 K2z3 ≤ −λmin{K2}||z3||2 (22)

the term −zT1 K2K1z1 is upper bounded by

−zT1 K2K1z1 ≤ −λmin{K2K1}||z1||2 (23)

now, let us upper bound the cross terms

zT1 K2
2z3+zT3 K1z1 ≤

(
λmax{K2

2}+ λmax{K1}
)
||z1||‖|z3||.

(24)
The bounds (21)—(24) yield that the time derivative

V̇ (z1, z2, z3) in (20), satisfies

V̇ (z1, z2, z3) ≤ −

 ||z1||||z2||
||z3||


T

R

 ||z1||||z2||
||z3||

 (25)

where

• R11 = λmin{K2K1}
• R12 = R21 = 0
• R22 = λmin{Fv} − 2kc1||ẋ∗||
• R13 = R31 = − 1

2

(
λmax{K2

2}+ λmax{K1}
)

• R23 = R32 = 0
• R33 = λmin{K2}

with an adequate K1 and K2 gain tune criteria and
keeping true λmin{Fv} > 2kc1||ẋ∗|| from R22, the matrix
R > 0 can be kept positive definite. By this way, global
asymptotic stability is ensured.

6. EXPERIMENTAL RESULTS

This section presents the experimental results for trajec-
tory tracking using the controller (10), (11) for nDOF
mechanical systems. The goal of the experiments is to
validate the afore developed controller and its stability
analysis in a closed loop system. The experiments were
performed in a XY system of two degrees of freedom.
The parameters of both mechanical systems are shown in
Table 1.
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Table 1. Nominal parameters

XY system

mass mx 0.45 kg
viscous friction fvx 11 kg/s
mass my 0.25 kg
viscous friction fvy 8 kg/s

6.1 XY mechanism

Let us consider the XY mechanism in Figure 7, whose
schematic is presented in Figure 2.

Fig. 1. XY mechanism.

y

x

m
x

m
y

Fig. 2. XY table system.

The XY system model according to the representation of
Lagrangian systems in (8) is

d

dt

[
q

q̇

]
=

[
q

M−1(q) [−Fv q̇ + τu]

]
(26)

where

M(q) =

[
mx 0

0 my

]
, Fv =

[
fvx 0

0 fvy

]
,

considering q = [x y]T ∈ R2, the system (28) can be
rewritten as follows

d

dt


x

y

ẋ

ẏ

 =



ẋ

ẏ

−fvx
mx

ẋ+
1

mx
τux

−fvy
my

ẏ +
1

my
τuy


(27)

and substituting the parameters from Table 1 in the
dynamical model (27) let us have

d

dt


x

y

ẋ

ẏ

 =


ẋ

ẏ

−24.44ẋ+ 2.22τux

−32ẏ + 4τuy

 . (28)

The proposed control scheme τu = [τux, τuy]T to solve the
trajectory-tracking problem is as in (10), (11) using the
following controller gains

k1 =

[
50 0
0 35

]
, k2 =

[
50 0
0 50

]
.

The reference signal proposed for both links is x∗ =
[0.01 sin (t) , 0.01 sin (t)]T , where the amplitude is 0.01 m
and the frequency is 1 rad

sec .

The control signal is activated after the first 2.5 seconds of
being initialized the experiment, this is made in order to
have a more detailed appreciation of the transient stage,
in Figure 3 and Figure 4 it can be seen the position of the
link on x and y axis respectively, in Figure 5 and Figure
6 is shown the position error on x and y axis, finally, the
control signal from x axis can be seen on Figure 7 as well
for y axis in Figure 8.
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Fig. 3. Position on x axis.
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Fig. 4. Position on y axis.

The experiments results have illustrated the effectiveness
of the proposed controller in a mechanical system, it
can be observed the good performance of the closed-loop
system where the position errors are kept bounded around
0.0002 m for the XY mechanism.

7. CONCLUSION

A control synthesis has been proposed to solve the track-
ing problem in mechanical systems using only position
measurements and without the need to implement an
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Fig. 5. Error measurement on x axis.
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Fig. 6. Error measurement on y axis.
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Fig. 7. Signal control on x axis.
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Fig. 8. Signal control on y axis.

observer/differentiator. The proposed approach consists
of a nonlinear dynamic controller for Lagrangian systems,
which ensures an asymptotic convergence to the reference
using only two gain parameters, some criteria is given
in order to tune the parameters. Also, viscous friction
is considered. The proposed control algorithm achieves
a zero position error during the nominal stage when
only viscous friction is considered. The lack of need of

velocity measurements in the control algorithm to achieve
the tracking objective and the closed-loop stability proof
using Lyapunov tools constitutes the main contribution
of the present approach.
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