
Parameter Estimation of the Acidogenic
Reactor of Two-Stage Anaerobic Digestion

?

Yara Bustillo ∗ Alejandro Vargas ∗ Yu Tang Xu ∗∗

∗Unidad Académica Juriquilla, Instituto de Ingenieŕıa, Universidad
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1. INTRODUCTION

Anaerobic Digestion (AD) is a process where different
microorganisms work in order to metabolize organic sub-
trates. It has successfully been employed to remediate
wastewater, sewage sludge, municipal and agricultural
solid wastes such as animal manures, while generating
renewable energy resources (Nguyen et al., 2015). The
major advantages include low energy consumption, less
sludge yield, the biomass can remain for a long time
without losing its metabolic activity, the ability to stabi-
lize diverse organic wastes with production of renewable
energy by the production of biogas, and operational low
costs since it does not utilize fossil fuels (Nguyen et al.,
2015; Bernard et al., 2001).

Despite the advantages, keeping an optimum operational
and stable AD process is highly difficult because it in-
volves biological and biochemical interrelated reactions
with diverse microbial communities (Hassam et al., 2015).
The principal steps that occur in AD are: hydrolysis,
acidogenesis, acetogenesis, and methanogenesis.

For this work we analyze a two-stage anaerobic digestion
(TSAD) process, since it has been reported that this
configuration has shown improvements over the process.
In this configuration, the AD is physically separated in
two bioreactors with two different microbial communities
based on pH selectivity, as illustrated in Fig 1. This
approach increases growth rates, consumes higher organic
loads, uses low start-up times, generates high-purity bio-
gas and improves process stability. In the first phase the
hydrolysis and acidogenesis of the feeded substrate occur,
generating an effluent rich in volatile fatty acids (VFA),
which is fed to the second phase, where the methano-
genesis occurs and methane-rich biogas is produced. This
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separation allows a better control of the process (Donoso-
Bravo et al., 2011).

Fig. 1. Two-stage Anaerobic Digestion Diagram

Mathematical models have demonstrated to be proper
tools for different purposes. However, modeling biochem-
ical processes is a delicate exercise. The quality of the
model and its structure must correspond to the objective
for which the model was built (Dochain, 2008). Thus, the
model could be used to: reproduce and predict the behav-
ior of a system; help in understanding the mechanisms
of the studied system; estimate variables which are not
measured; estimate parameters of the process; develop
control strategies; select correct optimization of opera-
tional conditions, among others (Nguyen et al., 2015;
Dochain, 2008).

Through the years several authors have developed dif-
ferent mathematical models for AD, but their use by
engineers, process technology providers and operators has
been very limited because of the wide variety of models
available and their very specific nature. For those reasons,
the Anaerobic Digestion Model 1 (ADM1) was developed
as a generic model by the International Water Associa-
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tion (IWA) (Batstone et al., 2002). This model is highly
complex, since it considers 32 dynamic state variables and
other physico-chemical processes. Therefore, it is compli-
cated to carry out a mathematical analysis of the model to
propose operation and control strategies. In consequence,
several simplified models have been developed, some of
them based on the ADM1. The model used in this work
is an alternative simplified model, based on the one pro-
posed by Hassam et al. (2015) with modifications that are
explained later.

It is important to keep the optimum operation point in
each bioreactor, but it is also important to analyze each
one individually. This work focuses only in the acidogenic
bioreactor, where the hydrolysis and the acidogenesis
stages take place. The principal reason to choose this
bioreactor is that hydrolysis is a limiting phase for the
process (Bajpai, 2017); thus it is also a critical phase for
all the process, and hence a bad control in the acidogenic
reactor may carry on to several problems in the influent
of the methanogenic bioreactor.

The purpose of this work is to verify if it is possible to esti-
mate parameters by the recursive least squares regression
method, that is an online method by measuring some of
the states of an underlying simplified mathematical model
of the hydrolytic-acidogenic process.

2. MATHEMATICAL MODEL DESCRIPTION

2.1 Assumptions

As several authors have taken into account (Donoso-
Bravo et al., 2011; Hassam et al., 2015; Bernard et al.,
2001), the variables are measured on a Chemical Oxygen
Demand (COD) basis.

One simplification is that compounds are grouped in
several generic macromolecules: the S0 is equal to the sum
of carbohydrates, proteins, and lipids; the S1 is the sum
of aminoacids, monosaccharides and fatty acids; and the
S2 is equal to the sum of valerate, butyrate, propionate,
and acetate (Hassam et al., 2015). Despite the fact that
each VFA (Volatile Fatty Acids) has its own degradation
rate, a global variable grouping all the VFA (S2) is more
commonly reported in real applications (Bernard et al.,
2001).

On the other hand, ammonia, a compound produced
in the acidogenesis of aminoacids, was not considered
since experimentally is has been observed that very low
concentrations of ammonia are produced. Also, in the
acidogenic reactor very little production of biogas has
been observed, both of CO2 and H2, and for this reason
the biogases are not yet included in the model.

2.2 Model description

The chosen model is based on the simplified model pro-
posed by Bernard et al. (2001), known as AM2, which,
years later, was adjusted by Hassam et al. (2015), who
added the hydrolysis with a first order reaction rate. This
change is quite convenient for our work since we work with
winery wastewater, which brings a significant amount of
particulate substrate (S0). The adjustment in the model
of Hassam et al. (2015) showed results comparable to the
ADM1 model in simulations. Nevertheless, in the case

where the hydrolysis is the limiting reaction (as in our
case), the first order rate can be a problem. For that
reason, we also considered the work of Donoso-Bravo
et al. (2011), where they use a Contois kinetic rate for
hydrolysis. This model explains better the hydrolysis phe-
nomena since it takes both the substrate and the biomass
concentrations into account (Donoso-Bravo et al., 2011).
Those considerations were made in order to be able to
represent in a better way the behavior of the real system.

Thus, for the acidogenic reactor, this model involves
two reactions and one bacterial population (acidogenic
bacteria, X1). In the first reaction, the acidogenic bacteria
(X1) hydrolyzes the particulate organic matter (S0) into
soluble compounds (S1). Afterwards, the same bacteria
population, X1, consumes the soluble substrate (S1) and
produces VFA (S2). The biological reactions are as follows
(Hassam et al., 2015):

S0
ρ0→ X1 + k1S1, (1)

k1S1
µ1→ X1 + k2S2, (2)

where ki are stoichiometric coefficients, also referred as
yield coefficients. The hydrolysis rate ρ0 is of Contois
type, whereas the acidogenic reaction is decribed by a
Monod law. It is important to note that the total COD is
composed of S1 and S2 (Bernard et al., 2001).

The mass balance for each state variable (ξ) in the liquid
phase is shown in Eq. (3). This equation is valid for the
acidogenic reactor. The differences between each state
are the input conditions and the value of the parameters
(Mogens et al., 2000).

ξ̇i = D(ξin,i − ξi) +

m∑
j=1

ai,jrj (3)

Acumulation = (Input−Output) +Reaction

The right-side term of Eq. (3) represents the sum of the
input, output and the kinetic rate expressions, described
by the multiplication of their stoichiometric coefficient
(ai,j) and the reaction rate (rj) (Donoso-Bravo et al.,
2011).

For better understanding, the kinetic rate expressions
and coefficients are shown in the Petersen matrix on
Table 1. The biological processes occuring in the system
are listed in the leftmost column of the matrix (hydrolysis,
acidogenesis, and decay of X1). The index j is assigned
to each process. The kinectic rate equations for each
process are recorded in the rightmost column of the
matrix. Last, the elements within the matrix comprise
the stoichiometric coefficients (Mogens et al., 2000).

Table 1. Petersen matrix

State Variable (i→)

Process (j ↓) S0 S1 S2 X1 Kinetic Rate

Hydrolysis -1 1 ρ0(S0,X1)

Acidogenesis -k1 k2 1 µ1(S1) ·X1

Decay of X1 -1 kd1 ·X1

Based on the mass balance described previously, the
following differential equations describe the four state
variables of the system:
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Ṡ0 = (Sin0 − S0)D − ρ0(S0, X1) (4)

Ṡ1 = (Sin1 − S1)D − k1µ1(S1)X1 + ρ0(S0, X1) (5)

Ṡ2 = (Sin2 − S2)D + k2µ1(S1)X1 (6)

Ẋ1 = −X1αD + (µ1(S1) − kd1)X1 (7)

where the subscript “in” refers to influent concentrations.
The parameter α was introduced by the authors to model
biomass retention: α = 0 corresponds to an ideal fixed-
bed reactor while α = 1 corresponds to an ideal reactor
with no biomass retention (Hassam et al., 2015; Vargas
and Sepúlveda-Gálvez, 2018).

2.3 Kinetics growth models

The modeling of biological kinetics is a difficult task. For
effects of this work the following models for bacterial
kinetics were considered:

Contois type Contois kinetics better explains the hy-
drolysis phenomena since it takes both the substrate and
biomass concentrations into account (Donoso-Bravo et al.,
2011):

ρ0(S0, X1) =
khydS0X1

X1 + S0/KT
= f1 (8)

where khyd is the hydrolysis degradation rate and KT is
the Contois affinity constant.

Monod type It is considered Monod-type kinetics for the
growth of acidogenic bacteria (Donoso-Bravo et al., 2011;
Hassam et al., 2015):

µ1(S1) =
µ∗S1

KS1 + S1
= f2 (9)

where µ∗ is the maximum bacterial specific growth rate,
and KS1 is the half-saturation constant associated with
the substrate S1.

3. PARAMETRIC MODEL

Parameter-estimation can be formulated as an optimiza-
tion problem. There exists a large number of different
identification methods available; however, it is true that
there is no universally best method. One broad distinction
is between on-line and off-line methods. For this work it is
used the classic least-squares method (LSM), which is an
on-line method that can be used to identify parameters
in dynamic systems. The on-line methods give estimates
recursively as the measurements are obtained and it is an
alternative to use for adaptive controllers or if the process
is time-varying, which is the case of our model (Aström
and Wittenmark, 1997).

In the LSM it is assumed that the calculated variable, y,
is given by the following model

y = θ1ΦT1 (x) + θ2ΦT2 (x) + ...+ θnΦTn (x) (10)

where ϕi are known functions and θi are unknown pa-
rameters. In order to be able to give an analytic solution,
the model must be a linear function of the unknown
parameters.

3.1 Linearization

At the equations (8) and (9), it is observed that KT and
KS1 appear as non-linear parameters. In order to obtain
an estimation of a linear parametric model we take a
Taylor expansion of ρ0(S0, X1) about KT at the estimate

K̂T and µ1(S1) about KS1 at the estimate K̂S1, which
yields:

ρ0(S0, X1) ≈ f1(K̂T ) +
∂f1(K̂T )

∂KT
KT − K̂T )

≈
(khydK̂

2
TX

2
1S0) + (KT khydX1S2

0)

(X1K̂T + S0)2

≈
(khyd)K̂2

TX
2
1S0

(X1K̂T + S0)2
+

(KT khyd)X1S2
0

(X1K̂T + S0)2
(11)

µ1(S1) ≈ f2(K̂S1) +
∂f2(K̂S1)

∂KS1
(KS1 − K̂S1)

≈
µ∗S1(2K̂S1 + S1)

(K̂S1 + S1)2
−

µ∗KS1S1

(K̂S1 + S1)2
(12)

Now, the system is linear in the unknown parameters,
but noting that K̂T and K̂S1 are estimates of those
parameters. Substituting Eq. (11) into Eqs. (4) and (5)
and substituting Eq. (12) into Eqs. (5), (6), and (7) yields
the following:

Ṡ0 = (Sin0 − S0)D −
(khyd)K̂2

TX
2
1S0

(X1K̂T + S0)2
−

(KT khyd)X1S2
0

(X1K̂T + S0)2
(13)

Ṡ1 = (Sin1 − S1)D −
µ∗k1X1S1(2K̂S1 + S1)

(K̂S1 + S1)2
+
µ∗k1KS1X1S1

(K̂S1 + S1)2

+
(khyd)K̂2

TX
2
1S0

(X1K̂T + S0)2
+

(KT khyd)X1S2
0

(X1K̂T + S0)2
(14)

Ṡ2 = (Sin2 −S2)D+
k2µ∗X1S1(2K̂S1 + S1)

(K̂S1 + S1)2
−
k2µ∗KS1X1S1

(K̂S1 + S1)2
(15)

Ẋ1 = −αX1D+
µ∗X1S1(2K̂S1 + S1)

(K̂S1 + S1)2
−
µ∗KS1X1S1

(K̂S1 + S1)2
−kd1X1 (16)

3.2 Parametric estimation

We use Eqs. (13), (14), (15), and (16) for the parametric
model in our identifier design. Now, the four equations
are linear in some parameters that are combinations of
khyd, KT , k1, µ∗, KS1, kd1, k2.

However, the model involves derivative signals Ṡ0, Ṡ1, Ṡ2,
and Ẋ1. Filtering those differential equations with stable
first order low-pass filters of the form λ

s+λ creates a suit-
able parametric model for identification. After filtering,
the following parametric model for the four state variables
is obtained:

λs

s+ λ
S0 =

λ

s+ λ
(Sin0 − S0)D − khyd

λ

s+ λ

S0K̂2
TX

2
1

(X1K̂T + S0)2

− khydKT
λ

s+ λ

S2
0X1

(X1K̂T + S0)2
(17)
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λs

s+ λ
S1 =

λ

s+ λ
(Sin1 − S1)D − k1µ

∗ λ

s+ λ

X1S1(2K̂S1 + S1)

(K̂S1 + S1)2

+ k1µ
∗KS1

λ

s+ λ

X1S1

(K̂S1 + S1)2
+ khyd

λ

s+ λ

K̂2
TX

2
1S0

(X1K̂T + S0)2

+ khydKT
λ

s+ λ

S2
0X1

(X1K̂T + S0)2
(18)

λs

s+ λ
X1 = −

λ

s+ λ
αX1D + µ∗

λ

s+ λ

X1S1(2K̂S1 + S1)

(K̂S1 + S1)2

− µ∗KS1
λ

s+ λ

S1X1

(K̂S1 + S1)2
− kd1

λ

s+ λ
X1 (19)

λs

s+ λ
S2 =

λ

s+ λ
(Sin2 − S2)D + k2µ

∗ λ

s+ λ

S1X1(2K̂S1 + S1)

(K̂S1 + S1)2

− k2µ
∗KS1

λ

s+ λ

S1X1

(K̂S1 + S1)2
(20)

3.3 Identifier Design

The parameter identification is now separated into one
nine-dimensional identification problem. From the equa-
tion (17) we estimate khydKT and khyd. From Eq. (18)
we estimate the parameters khydKT , khyd, k1µ

∗, and
k1µ
∗KS1. From equation (19) we estimate the parameters

µ∗, µ∗KS1, and kd1 and finally from the equation (20)
we estimate the parameters k2, and k2µ

∗KS1. Thus, the
parameter vector is

θ =



khyd
khydKT
k1µ∗

k1µ∗KS1
µ∗

µ∗KS1
kd1
k2µ∗

k2µ∗KS1


=



θ1
θ2
θ3
θ4
θ5
θ6
θ7
θ8
θ9


(21)

The regressor matrix ΦT is defined as follows:

ΦT =
λ

s+ λ

[
ΦT1 0
0 ΦT2

]
(22)

where

Φ1 =


− K̂2

TX1S0

(X1K̂T+S0)2
− X1S

2
0

(X1K̂T+S0)2

K̂2
TX1S0

(X1K̂T+S0)2
X1S

2
0

(X1K̂T+S0)2

0 −X1S1(2K̂S1+S1)

(K̂S1+S1)2

0 X1S1

(K̂S1+S1)2

 (23)

Φ2 =


X1S1(2K̂S1+S1)

(K̂S1+S1)2
0

− X1S1

(K̂S1+S1)2
0

−X1 0

0
X1S1(2K̂S1+S1)

(K̂S1+S1)2

0 − X1S1

(K̂S1+S1)2

 (24)

As it was defined in (10), the parameterization is given by
the product of the regressor and the unknown parameter
vector; therefore, it can be written as follows

y = ΦT θ (25)

with

y =
λs

s+ λ

S0

S1

X1

S2

−
λ

s+ λ

(Sin0 − S0)D
(Sin1 − S1)D

−αX1D
(Sin2 − S2)D

 (26)

In order to estimate values of the unknown parameters,
we use the recursive least-squares algorithm as follows:

˙̂
θ = −PΦε (27)

Ṗ = −PΦΦTP (28)

ε = ŷ − y (29)

ŷ = ΦT θ̂ (30)

θ̂(0) = θ̂0 (31)

P (0) = I (32)

4. SIMULATIONS

The process was simulated in the software Matlab with
the Simulink tool. For the simulation, the parameters were
taken from those reported by Bernard et al. (2001), Has-
sam et al. (2015) and Donoso-Bravo et al. (2011), while
the initial conditions are real measurements taken in the
laboratory using winery wastewater influent. It is impor-
tant to mention that the parameters were taken mainly
from Bernard et al. (2001) because the influent used in
this work was also winery wastewater. The parameters
used are those shown in Table 2, while the corresponding
9 parameter values are shown on Table 3.

Table 2. Experimental Parameters

Sym Units Reference

khyd 0.12 d−1 Donoso-Bravo et al. (2011)

KT 1.5 kgCODs
kgCODx

Donoso-Bravo et al. (2011)

k1 42.14 Bernard et al. (2001)
µ∗ 1.2 d−1 Bernard et al. (2001)
KS1 7.1kgm−3 Bernard et al. (2001)
kd1 0.033 d−1 Hassam et al. (2015)
k2 116.5 molkg−1 Bernard et al. (2001)

Table 3. Reference Parameters

Parameter Exp. Value Unit
θ1 khyd 0.12 d−1

θ2 khydKT 0.18 kgCODs
kgCODx

d−1

θ3 k1µ∗ 50.58 d−1

θ4 k1µ∗KS1 359.03 kgm−3d−1

θ5 µ∗ 1.2 d−1

θ6 µ∗KS1 8.52 kgm−3d−1

θ7 kd1 0.033 d−1

θ8 k2µ∗ 139.8 mol kg−1d−1

θ9 k2µ∗KS1 992.58 molm−3d−1

In the simulation, the recursive least-squares algorithm
was implemented. Several simulations with different con-
ditions were performed, but here only two are presented:
the first one was run with values near to zeros as initial
conditions, shown in Figure 2; the second one with initial
values close to the experimental values, shown in Figure 3.
On the other hand, Figure 4 shows the evolution of the
state variables.

The first graph of Figure 4 has an acceptable prediction
of how S2 is produced as S1 is up-taken and it can be
observed that the biomass is stable, just as expected in
the real process. The behavior of the states is according
to a real dilution rate in a laboratory acidogenic reactor
(1 d−1).

For the estimated parameters, we can notice several
results: applying the LSM, it is observed that most of
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Fig. 2. Estimation with parameters starting near to zeros.

Fig. 3. Estimation with parameters starting close to
reference values

them do not converge neither to a value nor to the
experimental parameters, when the initial guess of the
parameters is far from the true values (in this case all
near to zero). This is expected because we have used
a linearization to perform the estimation. In contrast,
Figure 3 shows the convergence of the algorithm, at least
for some of the parameters, which shows the applicability
of the procedure.

Another weakness of applying this parameter identifica-
tion technique is that it is necessary to measure all the
state variables on-line. Nowadays this is difficult to do
because equipment does not yet exist or is too expen-
sive. Nevertheless, with the recent development of some

Fig. 4. State Variables. Simulations with different dilution
rates.

equipments and current researches, some variables may be
measured indirectly, so it can be a good option in a short
future, or another option would be to use an observer or
estimator.

On the other hand, for biological systems such as the
one studied, this method could be important to make
the estimation in real time because in these systems the
parameters are expected to change in the time, and it is
shown how the least squares estimate can be obtained
recursively. The method could then also be an option
for future applications with adaptive controllers for the
biological systems.

5. CONCLUSIONS

For a system model that represents the dynamics of the
acidogenic bioreactor in a two-stage anaerobic digestion
system, the well-known recursive least squares parameter
estimation technique was developed and tested in sim-
ulations. The results are encouraging and may allow an
on-line estimation of critical process parameters, provided
that the state is continually measured. This may well be
the basis for future applications in process control of this
type of systems.
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