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Abstract—The present congressarticle deals with the observer
design conditions for two particular classes of linear systems with
commensurate delay. The first one is for systems with known
inputs and the second one for systems affected by unknown
inputs. The use of a Kalman-like decomposition is proposed, as
well as the application of a Luenberger-like observer only for
the observable part of the system decomposed. The conditions
proposed for the observers are considered based on the definition
of invariant factors of the original system.

I. INTRODUCTION

Linear systems with delays (also called hereditary systems,
equation with deviation in the argument, dead time or post-
effect) are systems that include certain information of the
past state in the process of the mathematical modeling of
the physical systems studied. A survey of chemical and
biological applications have been included in [7]. In the terms
of mechanical, electrical and aeronautical systems a number
of examples using these post-effects is shown in [1] and
[6]. The design of a Luenberger-like observer is a problem
widely studied and solved in the literature [9]. This consists on
generating a virtual copy of the studied system, which allows
to have direct access to the state. If the original system and
the observer are subjected to the same initial conditions, it is
expected, as time progresses, that both systems will behave
the same.

The design of observers for linear systems with delays
became quite complex, because those delays could appear
in the state equations, the inputs and the system outputs.
The main problem with these deviated argument equations is
the difficulty to ensure the convergence between the original
system and the virtual one. An important work of study has
been carried out for the case with known inputs in [5], and
for the case with unknown inputs in [4], [8] and [10]; the last
one considering systems where the output is also affected
by unknown inputs. Both of the previous mentioned works
have studied systems that satisfy the observability condition,
so the aim of this paper is to show the necessary conditions
for the design of observers in linear systems with commen-
surate delays that do not satisfy such condition but can be
worked with a Kalman-like decomposition. First, separating
the system in its corresponding observable and unobservable
part, occupying the properties previously developed in [5] and
[10], respectively. And then, designing the observer only for
the observable part of the system. The present work adopts

matrix polynomial methods based on ring theory in order to
allow an approach to existing techniques developed in linear
systems that do not consider delay.

A. Notation

The following notation will be used: Let G(δ) ∈ R[δ]n×m

be a polynomial matrix. It is defined G(δ)−1
R as a right

inverse (provided it exists) of G(δ) (i.e. G(δ)G(δ)−1
R = I),

and G(δ)−1
L as a left inverse (provided it exists) of G(δ)

(i.e. G(δ)−1
L G(δ)L = I). If G ∈ R[δ]n×n has an inverse

G (δ)
−1 (G (δ)

−1
G (δ) = G (δ)G (δ)

−1
= I) then, it is

called unimodular. For J(δ) ∈ R[δ]n×m with rank equal
to r, we define J(δ)⊥ ∈ R[δ]n−r×n as a matrix achieving
J(δ)⊥J(δ) = 0 and rank J (δ) = n− r.

Let G(δ) be a polynomial matrix of n×m dimension with
rank equal to r (taking into account that r ≤ min{n, m}).
There exist two invertible matrices U(δ) and Z(δ) over R[δ]
such that G(δ) is reduced to its Smith form, i.e.,

U(δ)G(δ)Z(δ) =

[
diag (ψ1(δ) · · ·ψr(δ)) 0

0 0

]
(1)

where the {ψi(δ)}′ s are monic nonzero polynomials sat-
isfying

ψi(δ)|ψi+1(δ) ; di(δ) = di−1(δ)ψi(δ)

where di(δ) is the gcd of all i× i minors of G(δ) (d0 = 1).
The {ψi(δ)}′ s are called invariant factors, and the {di(δ)}′ s
determinant divisors. Thus, G(δ) ∈ R[δ]n×m has a right
inverse if and only if it has n constant invariant factors,
and G(δ) ∈ R[δ]n×m has a left inverse if and only if it
has m constant invariant factors. Hence, a square matrix
G(δ) ∈ R[δ]n×n is unimodular if and only if it has n constant
invariant factors.

II. FORMULATION OF THE PROBLEM. CASE I

The mathematical model is presented as follows:

ẋ(t) =
∑ka
i=0Aix(t− ih) +

∑kb
i=0Biu(t− ih)

y(t) =
∑kc
i=0 Cix(t− ih) +

∑kd
i=0Diu(t− ih)

(2)

Where:
x(t) ∈ R[δ]n, is vector of the system trajectories of the state.
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u(t) ∈ R[δ]m, is the system control considered known.
y(t) ∈ R[δ]p, is the system output.

The initial condition ϕ(t) is a piecewise continuous func-
tion ϕ(t) : [−kh, 0] → R[δ]n for k = max ka, kb, kc, kd;
thereby, x(t) = ϕ(t) over [−kh, 0]. Ai, Bi, CiDi are ma-
trices of appropriate dimension with entries in R. In order
to facilitate the mathematical analysis, the delay operator is
introducedδi : x(t)→ x(t− ih) as δkx(t) = x(t− kh), k ∈
N0. Thus, the system in 2 can be represented with matricial
form:

ẋ(t) = A(δ)x(t) +B(δ)u(t)

y(t) = C(δ)x(t) +D(δ)u(t)
(3)

Where the fourfold of matrices A(δ), B(δ), C(δ), D(δ)
are defined as

A(δ) :=

ka∑
i=0

Aiδ
i ; B(δ) :=

kb∑
i=0

Biδ
i

C(δ) :=

kc∑
i=0

Ciδ
i ; D(δ) :=

kd∑
i=0

Diδ
i

A. Preliminaries

Following [2] we define a preliminary results analogous to
the ones without delays. Let ẋc(t) = A(δ)xc(t) + B(δ)u(t)
we have that the dynamic equation for xe(t) := x(t)−xc(t) is
given by ẋe(t) = A(δ)xe(t) with the output ye(t) := y(t) −
C(δ)xc(t) = Cxe(t). Thus, the estimation of x(t) is equiva-
lent to the estimation of xe(t) since x(t) = xe(t)+xc(t). This
means that without the loss of generality it can be assumed
that u ≡ 0.

Taking into account the results of [5], let us define the fol-
lowing generalized change of coordinates by ξ(t) = T (δ)x(t),
where the matrix in T (δ) is developed with the form T (δ) = T1(δ)

...
Tk(δ)

. Following the next construction:

T1(δ) = C(δ)
Ti+1(δ) = Ti(δ)A(δ)− H̄i(δ)C(δ), ∀i = 1, . . . , k − 1

(4)
where H̄i(δ)

′s are determined through[
H̄k(δ) . . . H̄1(δ)

]
= C(δ)Ak(δ)OLk (δ).

Therefore, the system in (2) can be transformed into the
form:

ξ̇(t) = Āξ(t) + H̄(δ)y(t)

y(t) = C̄ξ(t)
(5)

Where H̄(δ)y(t) is the term of output injection with
H̄(δ) ∈ R[δ]n×p, and matrixĀ and C̄ will be constant
matrices and the pair

(
Ā, C̄

)
is observable. There, we can

see that all the delay effects are presented as output injection,
thereby, an observer for ξ(t) can be designed as

˙̂
ξ(t) = Āξ̂(t) + H̄(δ)y(t) + L̄

(
y(t)− C̄ξ̂(t)

)
(6)

a) Dynamic Error: The estimation error is defined as
e(t) = ξ(t)− ξ̂(t). Therefore, taking into account (5) and (6),
we obtain the dynamic error:

ė(t) = (Ā− L̄C̄)e(t) (7)

where, the matrix L̄ is a constant matrix that turn the system
into Hurwitz. The observer (6) gives the estimation of ξ (t),
so the last step to estimate x (t) is to ensure that the matrix
T (δ) has a left inverse so that x (t) = T−1

L (δ)ξ (t). It has been
proven in [5] that if the observability matrix Ox(δ) ∈ R[δ] of
the system (2):

Ox(δ) =


C(δ)

C(δ)A(δ)
...

C(δ)An−1(δ)

 (8)

has a left inverse (or right) T (δ) has a left inverse, then we
can define an observer for x (t) by means of that of ξ (t), that
is with x̂ (t) := T−1

L (δ)ξ̂ (t) we obtain that x̂ (t) → x (t) as
t→∞.

Thus the problem here is to study the case when the
observability matrix Ox(δ) does not have a left inverse,
that is to search for an observer for the observable part
of the system.

B. Results Case I

a) Kalman-like decomposition of the system into its
observable and unobservable part: If we consider Vō as
the largest submodule V of R[δ] corresponding to the so-
called unobservable part of the trajectories of the system
(following the terminology of linear systems without delays)

that satisfies the inclusion
(
A(δ)
C(δ)

)
V ⊂ (V × 0). Let

Vō(δ) is a matrix whose columns form a basis of the the
module Vō = kerO(δ) and Vo(δ) is a matrix such that[
Vo(δ) | Vō(δ)

]
is unimodular (i..e. it is invertible). We

define V (δ) ∈ R[δ]n×n as V (δ) =
[
Vo(δ) | Vō(δ)

]−1
.

Let us divide the matrix V (δ) as V (δ) =

V Lo (δ)
−−−
V Rō (δ)

 in such

a way that

V (δ)V −1(δ) =

[
V Lo (δ)Vo(δ) V Lo (δ)Vō(δ)
V Rō (δ)Vo(δ) V Rō (δ)Vō(δ)

]
=

[
I 0
0 I

]
=

(9)
And since we consider this submodule as Vō = kerO(δ)

we can have the following algebraic equations:

A(δ)Vō(δ) = Vō(δ)Q(δ)

C(δ)Vō(δ) = 0
(10)

Now, we can make a coordinate transformation x̄(t) =
V (δ)x(t), that transforms the system explicitly as

˙̄x(t) =

[
V Lo (δ)A(δ)Vo(δ) V Lo (δ)A(δ)Vō(δ)
V Rō (δ)A(δ)Vo(δ) V Rō (δ)A(δ)Vō(δ)

]
x̄(t) (11)

y =
[
C(δ)Vo(δ) C(δ)Vō(δ)

]
(12)
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Because of (10), it can be confirmed that A3 :=
V Lo (δ)A(δ)Vō(δ) = V Lo (δ)Vō(δ)Q(δ) = 0. Moreover, since
C(δ)Vō(δ) = 0, we obtain the transformed system decom-
posed as follows

˙̄x(t) =

[
Ā1(δ) 0
Ā2(δ) Ā4(δ)

] [
x̄o(t)
x̄ō(t)

]
y(t) = C̄1(δ)x̄o(t)

(13)

Thus, in order to design an observer for x̄o(t), like (6), we
only need to ensure that the observability matrix

Ox̄o
(δ) =


C̄1(δ)Ā1(δ)
C̄1(δ)Ā2

1(δ)
...

C̄1(δ)Ān−1
1 (δ)

 (14)

is left invertible.

Proposition 1. Let r = rankOx(δ). I f the observability
matrix Ox(δ) has is left invertible (i.e. if it has n constant
invariant factors) then the observability matrix Ox̄o

(δ), of the
observable part of the system, is also left invertible.

Proof: We apply the matrix transformation

Ox(δ)V −1(δ) =
C(δ)Vo(δ)

C(δ)A(δ)Vo(δ)
...

C(δ)An−1(δ)Vo(δ)

C(δ)Vō(δ)
C(δ)A(δ)Vō(δ)

...
C(δ)An−1(δ)Vō(δ)

 (15)

But applying the relation in (10) we have C(δ)A(δ)Vō(δ) =
C(δ)Vō(δ)Q(δ) = 0, which means:

Ox(δ)V −1(δ) =
C(δ)Vo(δ)

C(δ)A(δ)Vo(δ)
...

C(δ)An−1(δ)Vo(δ)

0
0
...
0

 =


C1(δ)

C1(δ)A1(δ)
...

C1(δ)An−1
1 (δ)

0
0
...
0

 =
[
Ox̄o(δ) 0

]
(16)

Thus we have that the invariant factors of Ox(δ) and those
of Ox̄o(δ) are the same. Therefore according to the condition
of the proposition, Ox̄o(δ) is left invertible.

Thus, an observer for x̄o (t) may be designed as

˙̂
ξo(t) = Ā1ξ̂o(t) + H̄1(δ)y(t) + L̄1

(
y(t)− C̄1ξ̂o(t)

)
x̂o (t) = T−1

oL (δ)ξ̂o (t)

III. FORMULATION OF THE PROBLEM. CASE II

The mathematical model is presented as follows:

ẋ(t) =

ka∑
i=0

Aix(t− ih) +

kf∑
i=0

Fiω(t− ih)

y(t) =

kc∑
i=0

Cix(t− ih) +

ke∑
i=0

Eiω(t− ih)

(17)

Where:
x(t) ∈ Rn, is the vector of trajectories of the system.
y(t) ∈ Rp, is the system output.
ω(t) ∈ Rm, is the system input considered unknown.

The initial condition ϕ(t) is a piecewise continuous func-
tion ϕ(t) : [−kh, 0] → Rn for k = max ka, kf , kc, ke;
therefore, x(t) = ϕ(t) [−kh, 0]. Now, Ai, Fi, Ci, Ei are
matrices of appropriate dimension with entries in R. Thus,
the system in (17) can be represented such as:

ẋ(t) = A(δ)x(t) + F (δ)ω(t)

y(t) = C(δ)x(t) + E(δ)ω(t)
(18)

Where each of the matrices are defined as A(δ) :=∑ka
i=0Aiδ

i, F (δ) :=
∑kf
i=0 Fiδ

i, C(δ) :=
∑kc
i=0 Ciδ

i,
E(δ) :=

∑ke
i=0Eiδ

i.

A. Design conditions

In [10] are presented the next conditions:
Condition 1. For the quadruple A(δ), F (δ), C(δ), E(δ)

of the system in (18) exists a k∗ ∈ N0, such as the
rankMk∗(δ) = nx being Mk∗(δ) unimodular over R[δ]

Condition 2. For the triple F (δ), C(δ), E(δ) of the system
in (13), it is assumed that:

Invs

C(δ)F (δ) E(δ)
E(δ) 0
F (δ) 0

 = Inv
[
C(δ)F (δ) E(δ)
E(δ) 0

]
(19)

Again from [10] it is proved that if Condition 2 is satisfied,
then exists a matrix W (δ) ∈ R(nx+p)×2p[δ] such that fulfill:

W (δ)

[
C(δ)F (δ) E(δ)
E(δ) 0

]
=

[
F (δ)
E(δ)

]
Going back to the system in (18):

ẋ(t) = Ã(δ)x(t) +K1(δ)Λ−1(δ) ˙̄y(t) +K1(δ)Λ−1(δ)ȳ(t)

ȳ =

[
C̃(δ)

0

]
x(t) + Γ̄1(δ) ˙̄y(t) + Γ̄1(δ)ȳ(t)

(20)
Where:

Ã(δ) ∈ Rnx×nx [δ]; C̃(δ)Rr×nx [δ]; Γ̄1(δ), Γ̄2(δ) ∈
Rp×p[δ]; K1(δ),K2(δ) ∈ Rnx×p[δ]

Analogous to the observer proposed in [10], we next
transform (20) to its normal form with z = T (δ)x:

ż = A0z + [H(δ), 0]ȳ + K̄1(δ) ˙̄y + K̄1(δ)ȳ

ȳ =

[
C0

0

]
+ Γ̄1(δ) ˙̄y + Γ̄2(δ)ȳ

(21)
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Where

H(δ) = C̃(δ)Ã(δ)[Õ(δ)]−1
L

K1 = T (δ)K1(δ)Λ−1(δ)Rnz×p[δ]

K2 = T (δ)K2(δ)Λ−1(δ)Rnz×p[δ]

If Conditions 1 and 2 are satisfied for the system in (17),
then the next dynamics is obtained:

ξ̇ = L0ξ + J(δ)Λ(δ)

ẑ = ξ + P (δ)Λ(δ)y

x̂ = T−1
L (δ)ẑ

Where

L0 = A0 −G0C0

P (δ) = K̄1(δ)− [G0, 0]Λ̄1(δ)

J(δ) = [H(δ), 0] +K2(δ) + L0P (δ)− [G0, 0]Γ2(δ) + [G0, 0]

a) Dynamic Error.: The Estimation Error is thusez =
z − ẑ. Differentiating from ez:

ėz = [A0 −G0C0]ez

B. Results CASE II.

a) Decomposition of the system into its observable and
unobservable form: If the Condition 1 is not fulfilled, i.e.,
Mk∗(δ) has not n constant invariant factors over R[δ] but it
still has all constant invariant factors at its diagonal, then we
still can transform the original system in (18).

Now, if we assume Vō as the largest submodule V of R[δ]
corresponding to the unobservable part of the trajectories of
the system that satisfies the inclusion:(

A(δ)
C(δ)

)
V ⊂ (A× 0) + im

(
F (δ)
E(δ)

)
(22)

Now, taking into account [3] we can find a relation between
Vō and L ∗ , kerMk∗(δ) such as it allows the decomposition
of the system. If we have the next algebraic relation:

A(δ)V (δ) + F (δ)K(δ) = V (δ)Q(δ)
C(δ)V (δ) + E(δ)K(δ) = 0

(23)

Also, let S(δ) be a polynomial matrix of q × s dimension
with rank equal to r. There exists an invertible matrix T (δ)
over R[δ] (representing elementary row operations) such that
S(δ) is put into (column) Hermite form. Thus, we have that

T (δ)S(δ) =

[
S1(δ)

0

]
, where S1(δ) is of r× s dimensions,

and S1 has r invariant factors.

Proposition 2. The number of invariant factors in the original
matrix system affected by unknown inputs is the same as
those corresponding to the observable part of the transformed
system.

Proof: We have to show that ∆̄1(δ) = ∆1(δ)P−1(δ). If
we star with the algebraic relations:

Tk(δ)

[
∆k(δ)F (δ) ∆k(δ)A(δ)
F̄k(δ) Gk(δ)

]
=

[
F̄k+1(δ) Gk+1(δ)

0 ∆k+1(δ)

]
(24)

Mk+1(δ)
∆
=

[
Mk(δ)

∆k+1(δ)

]
, ∀ k ≥ 0 (25)

to obtain ∆1(δ), we have that[
G1(δ)
∆1(δ)

]
= T0(δ)

[
∆0(δ)A(δ)
G0(δ)

]
(3) (26)

Where we can split the matrix T0(δ) =

[
T

(a)
0

T
(b)
0

]
, taking

into account ∆0(δ)
∆
= 0 (dimension 1 × n), G0(δ)

∆
=

C(δ) and F̄0(δ)
∆
= E(δ). If we know that ∆1(δ) =

T
(b)
0 (δ)

[
0

C(δ)

]
and, applying the transformed C̄(δ) =[

C(δ) + E(δ)K(δ)
]
P−1(δ) and (24), we have ∆̄1(δ) like:

∆̄1(δ) = T
(b)
0 (δ)

[
0

C(δ) + E(δ)K(δ)

]
P−1(δ)

= T
(b)
0 (δ)

[
0

C(δ)

]
P−1(δ)

+T
(b)
0 (δ)

[
0

E(δ)

]
K(δ)P−1(δ)

(27)

Nevertheless, from (24) and because of the way it was
defined T0(δ) we have

T
(b)
0 (δ)

[
∆0(δ)F (δ)
F̄0(δ)

]
= T

(b)
0 (δ)

[
0

E(δ)

]
= 0 (28)

whereby, substituting (28) on (27) we have that ∆̄1(δ) =

T
(b)
0 (δ)

[
0

C(δ)

]
P−1(δ) implying:

∆̄1(δ) = ∆1(δ)P−1(δ) (29)

Defined the previous one proceeds to replicate the test, but
now for the step j + 1. Based on the previous result, we
have that ∆̄j(δ) = ∆j(δ)P

−1(δ) and we look for the form
∆̄j+1(δ) = ∆j+1(δ)P−1(δ).

∆j+1(δ) = T
(b)
j (δ)

[
∆j(δ)A(δ)
Gj(δ)

]
(30)

We also suppose Ḡj(δ) =
[
Gj(δ) + F̄j(δ)K(δ)

]
P−1(δ).

Thus,

∆̄j+1(δ) =

T
(b)
j (δ)

[
∆j(δ)A(δ) + ∆j(δ)F (δ)K(δ)

Gj(δ) + F̄j(δ)K(δ)

]
P−1(δ)

= T
(b)
j (δ)

[
∆j(δ)A(δ)
Gj(δ)

]
P−1(δ)

+T
(b)
j (δ)

[
∆j(δ)F (δ)
F̄j(δ)

]
K(δ)P−1(δ)

(31)

But, because of the property T (b)
j (δ)

[
∆j(δ)F (δ)
F̄j(δ)

]
= 0.

We have ∆̄j+1(δ) = T
(b)
j (δ)

[
∆j(δ)A(δ)
Gj(δ)

]
P−1(δ). Having

as a result that:

∆̄j+1(δ) = ∆j+1(δ)P−1(δ) (32)
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To finish the proof, we have to demonstrate that Ḡj(δ) =[
Gj(δ) + F̄j(δ)K(δ)

]
P−1(δ); in order to do that, we have

to show that Ḡ1(δ) =
[
G1(δ) + F̄1(δ)K(δ)

]
P−1(δ). Then,

we have the next expression

Ḡ1(δ) = T
(a)
0 (δ)

[
∆0(δ)A(δ) + ∆0(δ)F (δ)K(δ)

G0(δ) + F̄0(δ)K(δ)

]
P−1(δ)

= T
(a)
0 (δ)

[
∆0(δ)A(δ)
G0(δ)

]
P−1(δ)

+T
(a)
0 (δ)

[
∆0(δ)F (δ)
F̄0(δ)

]
K(δ)P−1(δ)

(33)
Of which, it is observed that effectivelyḠ1(δ) =[
G1(δ) + F̄1(δ)K(δ)

]
P−1(δ), and therefore, it can be as-

sumed that Ḡj(δ) =
[
Gj(δ) + F̄j(δ)K(δ)

]
P−1(δ), and in

this way it has been proven by induction that ∆̄j+1(δ) =
∆j+1(δ)P−1(δ).

If in addition it is considered that the matrix of transforma-
tion has the formP (δ) =

[
Mk∗(δ)
V −1
L (δ)

]
, we have the following

matrices:[
Ā1(δ) 0
Ā2(δ) Ā3(δ)

]
= P (δ)

[
A(δ) +B(δ)K(δ)

]
P−1(δ)[

C̄1(δ) 0
]

=
[
C(δ) +D(δ)K(δ)

]
P−1(δ)

B̄1 = Mk∗(δ)B(δ)
And the matrix Mk∗(δ) is constructed like 25. In this way,

it is possible to observe that the matrix product with respect to
the transformation matrix P (δ) it is the part corresponding to
the observable trajectories of the original system. Due to this,
we can conclude that the invariant factors of the transformed
part match with the invariant factors of the original system
which in turn correspond to the factors of the observable part
of the system. In addition, if it is taken into account that the
second part of the system decomposition corresponds to the
unobservable trajectories, it is appropriate to point out that
the invariant factors of the original system will be the same
as those of its observable part.

IV. NUMERIC EXAMPLES

A. Case I

Next, an academic example is presented to show the design
of an observer in linear systems with commensurate delay of
the transformed system.
You have a system like the one shown in (3) with the next
matrices

A(δ) =


1 −δ(1 + δ)(1 − δ2) 1 + δ −(1 + δ)(1 − δ2) 0
0 δ 0 1 0
0 δ(1 − δ2) 0 1 − δ2 0
0 1 + δ − δ2 −1 −δ2 0
0 0 0 0 1


C(δ) =

[
0 0 1 + δ 1 0

]
Making use of the transformationx̄(t) = V (δ)x(t) in the

system (3) you have the following matrices:

V (δ)A(δ)V −1(δ) =


0 1 0 0 0

1 + δ 0 1 0 0
0 −1 + δ2 0 0 0
0 0 0 1 0
0 0 0 0 1



C(δ)V −1(δ) =
[
1 0 0 0 0

]
Where the following matrices are obtained:

Ā1(δ) =

 0 1 0
1 + δ 0 1

0 −1 + δ3 0

 ; C̄1(δ) =
[
1 0 0

]
Being the observability matrixOx̄o

(δ) a left inverse matrix:

Ox̄o
(δ) =

 1 0 0
0 1 0

1 + δ 0 1


[Ox̄o(δ)]−1

L =

 1 0 0
0 1 0

−1− δ 0 1


Which indicates that a coordinate transformation can be

found such that it can be possible to design the observer for
the observable trajectories of the system:

˙̂
ξo(t) = Ā1ξ̂(t) + H̄1(δ)y(t) + L̄

(
y(t)− C̄1ξ̂(t)

)
Thus, the graph of the convergence of the estimation error

e(t) = ξ(t) − ξ̂(t) for the case of h = 1s is presented in
Figure 1:

Fig. 1. e(t) = ξ(t)− ξ̂(t) considering the delay h = 1s

B. Case II

Now we continues to show an academic example for the
design of an observer in linear systems transformed with
system delays when there are unknown inputs. We have a
system like the one shown in the following matrices:

A(δ) =
1 a12 a13 0 0 δ2+δ−1
0 δ−1 −δ 0 0 −1
0 a32 a33 0 0 δ−1

1−4δ+2δ2 4δ−1−2δ2 a43 δ−1 0 a46
a51 a52 δ3(1−δ) 1−2δ+δ2 1−δ a56
0 a62 a63 0 0 −δ2


Where,
a12 = δ + (δ − 1)(δ − 2δ2 − 1)
a13 = δ − 1 + δ2 + (1 + δ)(δ2 − 1)
a32 = 1 + (δ − 1)(1− 2δ)
a33 = 1− 2δ + (δ − 1)(1 + δ)
a43 = δ3 − δ2(1− δ) + (1 + δ)(1 + 2δ − δ3)
a46 = 1 + 2δ + δ(1− 2δ) + δ(δ − 1)− δ3

a51 = −1 + 3δ + 2δ(δ2 − 1)2
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a52 = (δ − 1)2 − δ(2δ2 − δ − δ3)
a56 = δ(δ − 1)2 − 1 + δ2(2 + δ − δ2) + δ(3δ + 5− 2δ2)
a62 = (δ − 1)(δ2 − 1 + δ(δ + 1))− 2− δ
a63 = −1 + δ(δ + 1)− δ3

B(δ) =


δ 0
0 0
0 0

1 + δ − δ2 δ
δ(1 + 2δ − δ2) 1 − δ + δ2

−1 1

 ; D(δ) =

−1 −δ
0 0
−1 −δ



C(δ) =

 0 −δ 0 0 0 0
0 1− δ −1 0 0 0
−1 0 −(δ2 + δ + 1) 0 0 −(1 + δ)


Making use of the transformationx̄(t) = P (δ)x(t) in

the previously described system, the following matrices are
obtained from the observable part

Ā1(δ) =


0 1 −1 0
1 −δ 0 0
−1 0 −1 0
−δ −1 −1 1


C̄1(δ) =

−δ 0 0 0
0 −1 0 0
0 0 −1 −1

 ; B̄1(δ) =


0 0
0 0
−1 −1
0 −δ


Applying the conditions previously stated for the original

system and the transformed in the observable part, it is
confirmed that they are the same, i.e.:

Condition 1: It has to be: (Ā1(δ), B̄1(δ), C̄1, D(δ)) with
k∗ = 3, such as Mk∗ = Mk∗+1 = I4.

Condition 2: The invariant factors:

Invs

[
C̄1(δ)B̄1(δ) D(δ)

D(δ) 0

]
= Invs

[
C(δ)B(δ) D(δ)
D(δ) 0

]
= {1, 1, 1}

Which indicates that a coordinate transformation can be
found such that it can be possible to design the observer:

ξ̇o = L0ξ + J(δ)Λ(δ)y

ẑo = ξo +H(δ)Λ(δ)y

x̂o = T−1
L (δ)ẑo

Thus, the graph of the convergence of the error ex̄o =
T−1
L (δ)ezo is given in Figure 2 considering the delay h =

0.01s and with unknown inputs ω1(t) = 100 sin(100t) y
ω2(t) = 20 sin(20t).

Fig. 2. Graph of convergence between the original system and the observer
of the observable part of the transformed system considering unknown inputs
and with h = 0.01s

Increasing the delay constant as h = 1s, we have obtained
the estimation error presented in Figure 3.

Fig. 3. Graph of convergence between the original system and the observer
of the observable part of the transformed system considering unknown entries
and with h = 1s.

V. CONCLUSIONS

The transformation of linear systems with commensurate
delay into their observable and unobservable parts, both for
systems without inputs and for systems with unknown inputs,
can be carried out using the concepts of unimodularity of the
observable matrix in [5], as well as the conditions obtained
with respect to the invariant factors in [10]; this due to the
existing equivalence with respect to the observable part of the
systems transformed to the invariant factors of the original
reference.
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