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Abstract: In this work we present an adaptive observer design for a class of Nonlinear-
Fractional-Order Systems (NFOS) where, using an analysis based on quadratic Lyapunov
functions and an extension of Barbalat’s theorem to the fractional-order case, the asymptotic
convergence of the observed states to the real ones is proven, as well as the boundedness of
the parameter reconstruction. Numeric examples are presented to show the effectiveness of the
proposed design.
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1. INTRODUCTION

Even though the concept of integro-differential fractional
equations was first proposed at the end of the 17th
century and taken into account as a research subject until
1884, their application to describe dynamic systems has
been gaining attention in recent years due to the fact
that several classes of physical systems, especially those
including diffusion dynamics or friction, as well as memory
and hereditary properties in materials and systems can
be better and more succinctly described by fractional
derivatives and integrals, rather than by their integer
counterparts [Caponetto, 2010]. As usually the integer
integral or derivative is represented by the operators Jn

and Dm respectively, where n ∈ N; so, fractional integral
and derivative are typically described also as the operators
Jβ and Dα, where α, β ∈ <, or even α, β ∈ C.

As the same tools used to analyse linear systems with
integer differentials and integrals, such as the Laplace
transform and the Fourier analysis can be extrapolated
and used in linear fractional ones, some methods have
been proposed to approximate the solution given by a
fractional differential equation of fractional differential
system (FOS), from a higher-order transfer function with
integer derivatives [Mansouri et al., 2010, Oustaloup,
1991] to the analysis of the step response [Dorcák et al.,
2002], similar to the case of first and second-order systems.
However, in most cases the parameters of the FOS are
assumed known or obtained from a physical analysis of
the system, especially regarding the fractional values α
and β.

Recently, some approaches have been proposed to identify
the parameters of a FOS. One of them considers expand-
ing the fractional differential equation to a larger integer
order system [Sabatier et al., 2006], assuming that the
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fractional values α or β are known. When also this pa-
rameters are unknown, approximation methods have been
proposed for the case of fractional-order chaotic systems
[Yuan and Yang, 2012] by using a particle-swarm opti-
mization and a numerical approximation of the solution
of the FOS. In this sense, also Genetic Algorithms (GAs)
have been proposed to tune the parameters of the PIαDβ

control [Cao et al., 2005], or to find the parameters of an
integer-order system [Kristinsson and Dumont, 1992] or
even for input-output linear systems [Zhou et al., 2013].
As it can be seen, the identification of a fractional order
system is still an open and active research problem.

In this work we present a an adaptive observer design
for a class of Nonlinear-Fractional-Order Systems (NFOS)
which analysis is based on quadratic Lyapunov functions.
The paper is organized as follows: In Section 2, a brief
description of fractional calculus and systems are given
and the problem statement is given. In Section 3, the algo-
rithm for adaptive observer is presented, and in Section 4
results are shown in order to illustrate the effectiveness of
the method. Finally, conclusions are discussed in Section
5.

2. ANTECEDENTS

From a mathematical point of view, a fractional order
integral or derivative is defined as an extrapolation of
the definition of the integer-order integral or derivative
of a certain function f(t), seen as a general fractional
differential operator Dα. However, there exist different
definitions of this operator, that in general do result
in different solutions. Two of the main approaches and
most generally used in control systems are the Riemann-
Liouville and the Caputo fractional operator [Gorenflo
and Mainardi, 1997].

Recall that, for n ∈ N, given the Cauchy’s formula for the
repeated integration
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Jnf(t)
∆
=

∫ t

a

∫ τ1

a

· · ·
∫ τn−1

a

f(τ)dτ · · · dτ2dτ1

=
1

(n− 1)!

∫ t

a

f(τ)(t− τ)n−1dτ (1)

if n is changed from an integer value to any real (and even
complex) value α ∈ <, then the definition is extrapolated
in the so called Riemman-Liouville fractional integral,
defined as

t0I
α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ)(t− τ)α−1dτ. (2)

where Γ(w) is the Gamma function of w ∈ C. From
the previous definition, the Riemann-Liouville fractional
differential operator Dα is then defined as

RL
a Dα

t f(t) =



1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α+1−n dτ,

α ∈ (n− 1, n), n ∈ N
dn

dtn
f(t),

α = n ∈ N,
(3)

Note that this operator is a left-inverse for (2) [Caponetto,
2010], i.e., Dα(Jαf(t)) = f(t).

A slightly different, but also valid definition of the differ-
ential operator, is given by [Caputo, 1967] and called the
Caputo Fractional Differential Operator :

C
aD

α
t f(t) =



1

Γ(n− α)

∫ t

a

dnf(τ)
dtn

(t− τ)α+1−n dτ,

α ∈ (n− 1, n), n ∈ N
dn

dtn
f(t),

α = n ∈ N.
(4)

These two definitions are not always interchangeable. In
the area of control systems, generally the Caputo’s defini-
tion is preferred, rather than that of Riemann-Liouville,
since in the first one the initial conditions typically associ-
ated with physical interpretation are involved, such as the
integer derivative at t = 0. In the latter, the initial condi-
tions involved do not have a clear physical interpretation
[Podlubny, 1998]. In this work, the Caputo’s definition is
used for the fractional derivative and a = t0, so in general,
we use the simplified notation CaD

α
t f(t) = D(α) = f (α)(t).

2.1 Problem Statement

Consider the class of single-input-single-output fractional-
order nonlinear systems with commensurate order given
by

z(α)(t) = Az(t) + f0(y(t), u(t)) + b

(
p∑
i=1

θigi(y(t), u(t))

)
y = Cz (5)

where z(t) ∈ <n is the pseudo-state vector, 0 < α < 1 the
derivative order, A ∈ <n×n, f0 : < × < → <n, b ∈ <n,
gi : < × < → <, C ∈ <1×n and θ = ( θ1, . . . , θp ) the

p parameters of the system. The objective is to find an
adaptive observer with the structure

ẑ(α)(t) = hz(ẑ, u, y, θ̂) (6)

θ̂(α) = hθ(u, y, ẑ) (7)

such that limt→∞(z− ẑ) = 0 and limt→∞(θ − θ̂) = 0.

2.2 Analysis

Let z̃ = z− ẑ be the observation error and θ̃ = θ − θ̂ the
parametric error. Calculating its dynamics we obtain:

z̃(α)(t) = Az(t) + f0(y(t), u(t))

+ b

(
p∑
i=1

θigi(y(t), u(t))

)
− hz(ẑ, u, y, θ̂). (8)

Choosing

hz(ẑ, u, y, θ̂) = Aẑ(t) + f0(y(t), u(t))

+ b

(
p∑
i=1

θ̂igi(y(t), u(t))

)
−Kỹ, (9)

where K ∈ <n×1 is a design matrix, ŷ = Cẑ, and ỹ = y−ŷ,
we obtain

z̃(α)(t) = Az̃(t)

+ b

(
p∑
i=1

θ̃igi(y(t), u(t))

)
−Kỹ (10)

3. MAIN RESULT

Choose the quadratic Lyapunov candidate function:

V (z̃, θ̃) =
1

2
z̃(t)TPz̃(t) +

p∑
i

θ̃2
i (t)γ

−1
i , (11)

where γi > 0 and P = PT ∈ <n×n, P > 0 a design
matrix. Knowing from Duarte-Mermoud et al. that given
a nonlinear system where x ∈ <n defined by

x(α)(t) = f(x(t), t),

and a quadratic function V (x(t)) = 1
2xT (t)Px(t), where

P = PT ∈ <n×n, its fractional derivative complies with

V (α)(x(t)) ≤ xT (t)Px(α)(t) = xT (t)Pf(x(t), t),

then, taking the fractional derivative of order α of V (z̃, θ̃),
we get

V (α)(z̃, θ̃) ≤ z̃TP

(
(A−KC) z̃ + b

k∑
i

θ̃igi(y(t), u(t))

)

+ γ−1
i

p∑
i

θ̃iθ̃
(α)
i

= z̃T (P(A−KC))z̃

+

p∑
i

θ̃i

(
z̃TPbgi(y(t), u(t)) + γ−1

i θ̃
(α)
i

)
From the first term of V (α), we get that

V1 = z̃T (P(A−KC))z̃ = z̃TQsz̃ + z̃TQAz̃,
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where Qs = 1
2 (P(A−KC) + (A−KC)P)

T
is the sym-

metric part of P(A−KC) and QA its antisymmetric part.
Then,

V1 = z̃TQsz̃.

and V (α)(z̃, θ̃), we can choose

θ̃
(α)
i = θ̂

(α)
i = −γi

(
z̃TPbgi(y(t), u(t))

)
, (12)

so

V (α)(z̃, θ̃) ≤ z̃TQsz̃

However, z̃ is not available. But if there exists P > 0 and
K such that Qs < 0 under the restriction Pb = CT , then

hθ(u, y, ẑ) = −γigi (y(t), u(t)) (y −Cẑ) (13)

Given the previous facts, we can provide the following
result

Theorem 1. Given the fractional-commensurate-order non-
linear fractional-order system (5) and the adaptive ob-
server given by (9) and (13), if there exists a constant ma-
trix P > 0 and a gain K ∈ <n×1 such that P(A−KC)T +
(A −KC)P < 0 and Pb = CT , then limt→∞ z̃ = 0 and

the parameter error θ̃ remains bounded.

Proof 1. Given that there exist P > 0 and K such that
Qs = 1

2

(
P(A−KC) + (A−KC)TP

)
< 0 and Pb =

CT 1 , then from the quadratic Lyapunov function (11)
we obtain, using (9) and (13), that

V (α)(z̃, θ̃) ≤ z̃TQsz̃.

Then, there exist some λP , λQs > 0 such that z̃TPz >
λP ||z̃||2 and z̃TQsz < −λQs

||z̃(t)||2. So,

V (α)(z̃, θ̃) ≤ −λQs
||z̃(t)||2 (14)

In consequence, from Gallegos et al. [2015] as V (z̃, θ̃)

is nonnegative, therefore z̃ and θ̃ remain bounded,
and necessarily 0 ≤ V (z̃, θ̃) < V̄ < ∞. Follow-
ing Navarro-Guerrero and Tang [2017], applying the
Riemann-Liouville fractional integral of order α to both
sides if the previous equation, we get

t0I
α
t

(
V (α)

)
≤ −λQs t0I

α
t ||z̃(t)||2. (15)

By the Newton-Leibniz formula generalization we know
that t0I

α
t

(
V (α)

)
= V (z̃(t), θ̃(t))− V (z̃(t0), θ̃(t0)), so

t0I
α
t ||z̃(t)||2 ≤ − 1

λQs

(
V (z̃(t), θ̃(t))− V (z̃(t0), θ̃(t0)

)
(16)

Then, t0I
α
t ||z̃(t)||2 < M < ∞. In consequence, by

the Barbalat’s Lemma extension to the fractional case
[Gallegos et al., 2015, Navarro-Guerrero and Tang, 2017],
limt→∞ z̃ = 0, and the asymptotic convergence of ẑ(t)

to z(t) is proven, and the parametric error θ̃ remains
bounded.

4. EXAMPLES

In this section we show some numeric examples to show
the effectiveness of the proposed method. All simulations
were run using Matlab & Simulink, using the numeric
Grunwald-Letnikov approximation for Caputo fractional
1 This is the same Kalman-Yakubovich condition required in the
integer-order case

derivative, using a sampling time of 5 ms and a buffer of
500 samples.

4.1 Example 1.

Consider the system (5) with n = 2 where A =(
−1 −1
0 1

)
,b =

(
0
1

)
, f0(y(t), u(t)) =

(
−2y
−3y

)
,

g1(y(t), u(t)) = sin(y(t)), g2(y(t), u(t)) = cos(u(t)) with
y = z2, so C = ( 0 1 ), and assume that the unknown pa-

rameters with real values are θ(t) = {
(
θ1

θ2

)
=

(
5
6

)
, t <

200;

(
θ1

θ2

)
=

(
10
12

)
, t ≥ 200}, . Let K be the gain such

that locates the poles of (A−KC) on the design location
λ{(A −KC)} = {λ1, λ2}. If λ1 = −2, λ2 = −3, then it

is easy to find that K =

(
1
4

)
. Now, as the problem is

to find a matrix P > 0 such that P(A − KC) + (A −
KC)TP is negative definite and Pb = CT , solving for

P =

(
p1 p2

p2 p3

)
we obtain the restrictions p2 = 0 and

p3 = 1, p1 > 0. Therefore, solving the matrix inequality
Qs = 1

2

(
P(A−KC) + (A−KC)TP

)
< 0, we find that

the condition for a feasible solution is 0.0505 < p1 <
4.9495. In Fig. 2 to 5 it is shown the simulation results
with x(0) = [1, 1]T and null initial conditions for the
observer, with p1 = 2 and γ1 = γ2 = 10, when the
system is subject to the periodic input signal shown in
Fig. 1. It can be seen how the observer state converges
asymptotically to the actual state in Fig. 2 and 3, and
how, although not proven yet, the parameters converge
to their real values, as it can be seen in Fig. 4 and 5.

0 2 4 6 8 10 12 14 16 18 20

Time (s)

1

1.5

2

2.5

3

3.5

4

u(
t)

Fig. 1. Input to the system

4.2 Example 2. Neuro-fuzzy approximation

The adaptive observer algorithm can also be used, as
in previous works [González-Olvera and Tang, 2010], as
a method to train a neural network for identification
purposes. In order to show that it can be also expanded to
the fractional-order case, consider the same system as in
the previous example, but now assuming that gi(·, ·), i =
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Fig. 2. Dynamics of the state z1 and ẑ1
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Fig. 3. Dynamics of the state z2 and ẑ2
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Fig. 4. Dynamics of the state θ1 and θ̂1
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Fig. 5. Dynamics of the parameters θ2 and θ̂2

1, 2 functions in 5 are unknown, so its structure is to be
approximated by a neurofuzzy network in the form
p∑
i=1

θigi(y(t), u(t)) ≈ Φ(β, y(t), u(t)) =

N∑
j=1

βjφi(y(t), u(t)),

(17)

where Φ(β, y(t), u(t)) is a neurofuzzy function given by
gaussian radial-basis functions for each rule in the form

rj(y(t), u(t)) = e−σu,j(u(t)−µu−j)2−σy,j(u(t)−µy−j)2 , φj =
rj(y(t),u(t))∑

j
rj

so βj are the consequent parameters on each

fuzzy rule. Assuming only the consequent parameters are
to be found, using only the input and output signal
information from the previous example, using σy−j =
σu−j = 1, µy−j = {1, 1, 1, 0, 0, 0,−1,−, 1,−1}, µu,j =
{1, 2, 3, 1, 2, 3, 1, 2, 3}, the parameter evolution is shown
in Fig. 6, finding the set of consequent parameters

βj = {11.22, 3.33, −0.06139, 3.031,
−1.577,−1.627, −1.425, −11.27, −10.14} .

The identification results are shown in Fig. 7, where it
can be seen how the system with a neuro-fuzzy function
does effectively approximate the actual one. It can be
also observed that, although model uncertainties occur
in the approximation process by the neurofuzzy network,
the algorithm remains stable and convergent.

5. CONCLUSIONS

In this work we have presented a methodological design
of an adaptive observer for a class of nonlinear fractional-
order systems, where, assuming a linear parameterization,
guarantees the asymptotic convergence of the observed
states to the real ones, as well as the boundedness of
the parametric error. Numeric examples are presented in
order to show the effectiveness of the proposed scheme. It
was shown how the algorithm remains stable and conver-
gent even under parametric changes and model uncertain-
ties. Further work includes the analysis of the convergence
under bounded disturbances and model uncertainties.
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Fig. 6. Parameter evolution for Example 2.
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Fig. 7. Dynamics of the actual system with output y vs.
the identified dynamics ŷ
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