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Misael Medina Barrera∗ Raúl Rascón Carmona∗ Sergio Gomez Silva ∗

Andrés Calvillo Téllez ∗∗
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Abstract: In this work, a trajectory tracking controller based on Slide-Mode Control (SMC),
Terminal Sliding-Mode (TSM) and derived from finite time stability theory is presented.
The main contributions from this algorithm are finite-time convergence of the states to zero
and robustness against external perturbations and parametric uncertainties using only one
tunable gain. Stability test are made to demonstrate the finite-time stability in closed loop
and calculation of the system trajectories reaching time to the sliding surface.
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1. INTRODUCTION

When it comes to model a real plant system dynamics,
usually, discrepancies and mismatches arise between the
real system and its mathematical model. These differences
usually come from parametric uncertainties and external
perturbations. The most interesting and challenging duty
of modern control theory is to design a valid control
law to get the desired performance from the closed-loop
system, overcoming the effects from these disturbances,
this method is called robust control. The most common
and probably one of the best methods that had arisen as
a robust answer to disturbances and parametric uncer-
tainties, is the Sliding-Mode Control (SMC), which has
been studied in Utkin (1977) and Young et al. (1999).
This method uses a variable structure system (VSS),
which is made up with ordinary differential equations
with discontinuous right hand side, see Filippov (1988).
The discontinuous term drives the differential equations
trajectories to the discontinuity surface (sliding surface)
and keeps the trajectories ”sliding” on the surface, once
the trajectories are moving across the sliding surface, the
system dynamics remain stable, even against perturba-
tions affecting the system. Before the trajectories reach
the sliding surface, there is a ”reaching” time that starts
from the initial conditions of the system and finishes
when the trajectories reach the sliding surface. During
this time, trajectories are vulnerable to perturbations and
parametric variations. The ordinary SMC method or First
Order Sliding-Mode (FOSM) drives the trajectories to
the equilibrium point asymptotically, but using Terminal
Sliding-Mode (TSM) the equilibrium point of the system
is reached in finite-time, see Venkataraman and Gulati
(1993). The reaching time can be adjusted by tuning the
TSM parameters.

Control of mechanical systems has been an interesting
duty due to its industrial applications. SMC can be
designed for trajectory tracking purposes, for previous
work about tracking and sliding-mode in mechanical
systems see Slotine and Sastry (1983). For TSM related
works see Yu et al. (2002, 2005).

This work discusses the design of a terminal sliding mode
control law for a second order dynamical systems, besides
this, the stability analysis is made to prove the finite-
time convergence to the controller’s tracking goal, for
related works to finite-time stabilization see Sanyal and
Bohn (2015); Zhu et al. (2011). The rest of the paper
is organized as follows: In section 2 it is described the
problem statement in second order dynamical systems,
including mechanical systems of one degree of freedom on
either rotational or translational links, also it is described
the general structure of the controller and description of
the discontinuous right hand side term of the equation.
Section 3 explains the system in function of errors, control
compensations, the variable sliding surface structure that
splits in three different disjoint sets and the control law.
Section 4 describes the stability analysis and it is estab-
lished a equation for the reaching time of the trajectories
to the sliding surface. The experiment results comparing
the proposed controller with existing controllers is pre-
sented on Section 5 and final conclusions are on Section
6.

2. PROBLEM STATEMENT

The proposed problem is to design a discontinuous con-
troller based on the FOSM control, see Shtessel et al.
(2014), to solve the tracking problem for the system on
equation (1).
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ẋ1 = x2

ẋ2 = f(x) + g(x)u+ w(t)
(1)

Consider that x = [x1, x2]T is the state vector, u ∈ < is
the control input, the nominal dynamics of the system are
given by the nonlinear function f(x) ∈ <, g(x) ∈ < is a
well known function, and w(t) is a disturbance term for
parametric uncertainties and external perturbations.

Assumption 1. The disturbance term w(t) is unknown,
although it is upper bounded by a known constant M
that satisfies

supt≥0|w(t)| ≤M (2)

for a constant M > 0.

As equation (1) possess discontinuous right-hand side,
the dynamic of such equation is defined throughout in
the sense of Filippov, see Filippov (1988). Due to non-
uniqueness of solutions, the system (1) may have some
solutions that converge to the origin, while other solutions
don’t.

The discontinuous right-hand side is given by the signum
function defined in equation (3).

sign(x2) =


1 x2 > 0

0 x2 = 0

−1 x2 < 0.

(3)

3. CONTROL DESIGN

The control objective is to find a control u, depending
on the desired position or trajectory xd which is Ck, for a
sufficiently large k, the generalized coordinates x1 and x2,
such that the closed-loop response of system (1) satisfies
the condition on equation (4).

lim
t→∞

|x(t)− xd| = 0. (4)

Let us propose a variable structure controller, based on
the FOSM control, see Shtessel et al. (2014), to be applied
on the system in equation (1). For this purpose, first
shift the equilibrium point of (1) by defining the following
transformation showed on equation (5).

e1 = x1 − xd,
e2 = ẋ1 − ẋd = x2 − ẋd. (5)

Rewriting system (1) according to (5) and considering
e = [e1, e2]T

ė1 = e2

ė2 = f(e) + g(e)u+ w(t)− ẍd.
(6)

For system (6) the following control design is proposed

u = −g(e)−1
(
f̃(e)− τ − ẍd

)
(7)

Assumption 2. f̃(e) = f(e) + ∆f(e) is an approximate
compensation term for the nonlinear function f(e), ∆f(e)

represents the error between f(e) and f̃(e), the term
∆f(e) is considered upper bounded by a constant N .

Substituting (7) in (6) renders to

ė1 = e2

ė2 = −∆f(e) + τ + w(t).
(8)

The proposed finite time sliding-mode controller is based
on FOSM, see Rascón et al. (2016); Shtessel et al. (2014),
the sliding surface is proposed as follows

s =


e2 + e

1
2
1 e1 > 0

e2 e1 = 0

−e2 + (−e1)
1
2 e1 < 0.

(9)

the expression (9) can be synthesized as

s =

 sign(e1)e2 + |e1|
1
2 e1 6= 0

e2 e1 = 0
(10)

The dynamical behavior of the proposed finite time sliding
surface (red) can be seen in Fig 1, notice the behavior
of the sliding surface (blue) normally used in FOSM
controllers that unlike the proposed finite time sliding
surface, this converges asymptotically to the reference,
see Shtessel et al. (2014).
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Fig. 1. Proposed finite time sliding surface and conven-
tional sliding surface.

In order to design the control law τ from (9), the state
space <2 is splitted in three disjoint sets, Σ−, Σ0 and Σ+,
characterized by the sign of e1, described by

Σ− = {e ∈ <2|e1 < 0},
Σ0 = {e ∈ <2|e1 = 0},
Σ+ = {e ∈ <2|e1 > 0}.

(11)

Consider the structure Σ− of the system (the analysis of
the structures Σ0 and Σ+ are similar). First let us get
ṡ = ∂s

∂e ė given by
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ṡ = ∆f(e)− τ − w(t) +
1

2

e2√
e1

(12)

now, let us consider (12) to design τ , which must fulfill the
reachability law sṡ < 0, defined in the literature Edwards
and Spurgeon (1998). One control law τ which satisfies
sṡ < 0 is

Σ− : −τ =
1

2

e2√
e1

+ βsign(s) (13)

where the reachability law is given by sṡ = −β|s| −
(∆f(e) − w(t))s ≤ −(β − (M + N))|s| < 0, therefore
all the trajectories converge to the sliding surface while
β > M +N is satisfied. The same procedure is applied to
structures Σ0 and Σ+ to get τ , resulting as follows

Σ0 : τ = βsign(s) (14)

Σ+ : τ = −1

2

e2√
−e1

− βsign(s) (15)

where the same inequality β > M + N still applies. The
controllers designed for each structure can be unified in a
single multivalued expression τ ∈ Σ− ∪Σ0 ∪Σ+ given by

τ =


−1

2

e2√
|e1|

+ βsign(s)sign(e1) e1 6= 0

−βsign(s) e1 = 0

(16)

the next section it is going to be proved the finite time
convergence to the reference of the closed-loop system
given above.

4. STABILITY ANALYSIS

In order to prove that the trajectories of the system can
be brought to the sliding surface (9) at s = 0 in finite
time, the system dynamics of the disjoint sets are defined
by

Σ− ⇒ 0 = −e2 + (−e) 1
2 → ė1 = (−e1)

1
2 ,

Σ+ ⇒ 0 = e2 + e
1
2 → ė1 = −e

1
2
1 .

(17)

Consider the structure Σ− of the system (the analysis of
the structure Σ+ is similar) and integrating both sides of
the equation (17)

∫ e1(tr)

e1(t0)

de1 =

∫ tr

t0

−
√
e1dt (18)

where reaching time (tr) is the time when the trajectories
reach the sliding surface. Considering e1(tr) = 0 and
solving for the reaching time (tr)

Σ− : tr = t0 + 2
√
−e1(t0). (19)

The same procedure is applied to structure Σ+, resulting
as follows

Σ+ : tr = t0 + 2
√
e1(t0). (20)

Unifying both expressions (19) and (20), gives the general
time in which the errors will reach the sliding surface
s = 0, no matter the sign of e1.

tr = t0 + 2
√
|e1(t0)| (21)

5. EXPERIMENT RESULTS

The real time experiments were developed in a simple
pendulum system, showed on Fig. 2, with a data acquisi-
tion board DSPACER© and the acquisition sampling rate
was set to 0.001 s.

Fig. 2. Single pendulum system used for test.

Let the system used for the experiment be a simple
pendulum

ẋ1 = x2

ẋ2 = −ax2 − bsin(x1) + cu
(22)

where a = fv
ml2 , b = mgl

ml2 , c = 1
ml2 . Representing the

system in function of errors and substituting (22) in (6)

ė1 = e2

ė2 = −a(e2 + ẋd)− bsin(x1) + cu+ w(t)− ẍd
(23)

and the designed control (7) is defined as

u = −c−1(−a(e2 + ẋd)− bsin(x1)− τ − ẍd)

τ =


−1

2

e2√
|e1|

+ βsign(s)sign(e1) e1 6= 0

−βsign(s) e1 = 0

s =

{
sign(e1)e2 + |e1|

1
2 e1 6= 0

e2 e1 = 0

(24)

The FOSM algorithm used is shown in equation (25) and
it’s applied to the same system on equation (23).
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u = −c−1(−a(e2 + ẋd)− bsin(x1)− τ − ẍd)

τ = −e2 − βsign(s)

s = e1 + e2

(25)

where e2 = de1/dt, the FOSM controller can absorb
perturbations and uncertainties w(t) which are bounded
by |w(t)| ≤ D, and the condition β > D must be hold for
stability purposes, see Rascón et al. (2016).

Table 1. Experiment parameters

Plant parameters

Notation Value

x1(0) 0
x2(0) 0
xd cos(t)
a 17
b 93
c 103

Proposed controller

β 11

FOSM

β 10

The initial conditions and the plant parameters used for
the experiment are shown on table 1.
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Fig. 3. Position measurements (experiment).

Fig. 3 shows the position measure (x1), Fig. 4 represents
the error between the position and the desired trajectory.
It can be seen on these two first experiment figures
that the proposed TSM algorithm converge faster to the
desired trajectory than the FOSM controller. The control
signal is shown on Fig. 5, showing that both signals are
similar.

6. CONCLUSIONS AND FINAL COMMENTS

The designed controller uses the finite-time convergence
theory from TSM to achieve the trajectory tracking goal,
its implementation on mechanical systems become simple
due to the only tunable gain the controller has. Robust-
ness is an important feature for this controller, its al-
gorithm allow to compensate bounded disturbances once
the trajectories are inside the sliding surface. Performance
compared with FOSM has been improved, achieving the
desired trajectory in less and finite time, leading the
position error to zero faster and directly, avoiding the
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Fig. 4. Position error measurements (experiment).
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Fig. 5. Control signal comparison (experiment).

asymptotic behavior of the FOSM controller and without
increasing the controller signal amplitude compared with
FOSM control signal.
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