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Abstract: One of the basic synchronization strategies of multiple agents is the leaderless
consensus where, independently of the initial conditions, the agents agree at a certain constant
coordinate. In this paper, we propose a novel controller that is capable of solving the leaderless
consensus problem in finite-time in networks of fully-actuated Euler-Lagrange (EL) systems
without employing velocity measurements and with bounded inputs. The controller is another
EL-system with its own dissipation of energy that is back-propagated to the plant and the
plant-controller interconnection is the force of a nonlinear spring.
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1. INTRODUCTION

When controlling a network of multiple agents, different
coordinated behaviors can be achieved, namely: synchro-
nization, flocking, formation control and consensus (Cao
and Ren, 2011; Hatanaka et al., 2015). Being consensus
the basic behavior for which all the agents state agree on a
common constant value using a decentralized interaction
among these agents (Ren, 2008, 2009; Chung and Slotine,
2009; Nuño et al., 2011). In the leaderless consensus
problem there exists a common coordinate value where
all agents agree. Since the fundamental works (Jadbabaie
et al., 2003; Olfati-Saber and Murray, 2004), motivated by
the several practical applications in engineering, the study
of consensus and synchronization of multiple agents has
increased in the recent years (Abdessameud et al., 2017;
Nuño and Ortega, 2018; Nuño, 2017; Klotz et al., 2018).

In this paper, we consider networks composed of N fully-
actuated and conservative Euler-Lagrange (EL) agents,
with n-Degrees-of-Freedom (DoF). Each ith-agent is de-
scribed by

d

dt
∇q̇i

Li(qi, q̇i)−∇qi
Li(qi, q̇i) = τ i, (1)

where Li(qi, q̇i) is the Lagrangian function that is defined
as Li(qi, q̇i) := Ki(qi, q̇i) − Ui(qi), with Ki(qi, q̇i) :=
1
2 q̇

⊤
i Mi(qi)q̇i the kinetic energy and Ui(qi) the potential

energy. qi, q̇i ∈ R
n are the generalized position and

velocity, respectively, Mi(qi) ∈ R
n×n is the generalized

inertia matrix, which is symmetric positive definite, and
τ i ∈ R

n is the control input.

Most of the previous works on the consensus of EL-
systems require velocities to be measurable. However,
⋆ This work has been partially supported by the Mexican CONA-
CyT grant CB-282807.

many of the commercially available devices are not
equipped with velocity sensors and those with velocity
sensors are often prone to noise and additional velocity
filters should be incorporated (Arteaga and Kelly, 2004).
There are few proposed schemes that do not rely on
velocity measurements, e.g., (Ren, 2010; Abdessameud
and Tayebi, 2013) and, more recently, (Nuño and Ortega,
2018) and (Nuño, 2017). However, all of them can only
ensure that the leaderless consensus control objective can
be ensured when time tends to infinity, i.e., asymptoti-
cally or exponentially.

Compared to asymptotic or exponential, Finite Time
(FT) convergence has better appealing features such as
better robustness and disturbance rejection properties,
faster transients and higher-precision performance are
guaranteed when the uncertainty (or disturbance) bounds
are available (Venkataraman and Gulati, 1993; Bhat and
Bernstein, 2000; Orlov, 2005; Galicki, 2015). Different FT-
control strategies for multi agent first order systems can
be found in (Cortés, 2006; Davila and Pisano, 2016). The
FT-control of multiple second order systems is studied
in (Ge et al., 2016; Liu et al., 2017). Using different,
continuous and discontinuous, control techniques all these
works have established their results assuming that veloc-
ities are available. A notable exception is (Zhao et al.,
2015), which does not rely on such requirement and,
instead, it proposes to use a velocity observer to solve the
leader-follower consensus problem in FT. Nevertheless, in
order to set the observer gains, the work of Zhao et al.
(2015) relies on the a priori knowledge of the largest in-
degree of the interconnection graph and of the bound of
the velocities. Hence, such result is not distributed and
assumes that velocities are bounded and such bound is
known.
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Here we are interested in designing a controller that can
ensure consensus of multiple EL-agents in finite-time,
when there are input constraints and when velocities
are not available for measurement. In this scenario we
consider that only position measurements are available
and that the multi-agent network interconnection can
be modeled using a connected and undirected graph.
In particular, we propose a controller that solves the
following problem.

(LC) Leaderless Consensus Problem. The network
has to reach a consensus position in finite-time. That
is, there exists a constant q⋆ ∈ R

n such that, for all
i ∈ N̄ := {1, ..., N},

lim
t→Ti(qi(0),q̇i(0))

qi(t) = q⋆, lim
t→T (q(0),q̇(0))

|q̇i(t)| = 0,

(2)
where Ti(qi(0), q̇i(0)) < ∞ is the settling-time. ⊳

2. PRELIMINARIES

2.1 Notation

Throughout the paper, the following notation is em-
ployed. R := (−∞,∞), R>0 := (0,∞), R≥0 := [0,∞),
N := {1, 2, 3, . . .} and n̄ := {1, 2, ..., n} for n ∈ N.
In ∈ R

n×n denotes the n×n identity matrix and 1n ∈ R
n

defines the vector of n elements equals to one. For all
x ∈ R, |x| is its absolute value. For x ∈ R

m, for any
m ∈ N, ‖x‖ stands for its Euclidean norm. For any
δ ∈ R>0, Bδ := {x ∈ R

m : ‖x‖ < δ} and Sm−1
δ :=

{x ∈ R
m : ‖x‖ = δ} are an open ball and an m − 1

sphere, centered at the origin with radius δ, respectively.
A function f(t) : R≥0 7→ R

m is said to be of class Ck, for

k ∈ N, if its derivatives ḟ , f̈ , ..., f (k) exist and are continu-

ous. For any x ∈ R
m,∇x := [∂x1

, . . . , ∂xm
]
⊤
stands for the

gradient operator of a scalar function and ∇2
x :=

[

∂xi
∂xj

]

is the Hessian operator where ∂xi
:= ∂

∂xi
and i, j ∈ m̄.

λm{A} and λM{A} are the minimum and the maximum
eigenvalues of the symmetric matrix A ∈ R

m×m.

For any x ∈ R and any p > 0, we define the signed
power function ⌈x⌋p : R 7→ R as a strictly increasing
odd (continuous) function given by ⌈x⌋p := |x|psign (x),
where sign (x) is the standard sign function and it has the
following properties:

P1: For each p ∈ [0, 1), ⌈x⌋p is differentiable for all x 6= 0,
⌈x⌋p ∈ C1 if p ∈ [1, 2] and ⌈x⌋p ∈ C2 if p ∈ (2,∞). ⊳

P2: For each p ∈ (0, 1], there exists δ ∈ R>0 such that

|x|p+1 ≥

{

δp−1|x|2 if |x| < δ,
δp|x| if |x| ≥ δ.

(3)

⊳

A (p, δ)-saturation function satδ(⌈x⌋
p) : R 7→ R, p, δ ∈

R>0, is a strictly increasing odd function defined by

satδ(⌈x⌋
p) :=

{

⌈x⌋p if |x| < δ,
δpsign (x) if |x| ≥ δ.

(4)

The saturation function satisfies the following property:

P3: For all x ∈ R and p, δ ∈ R>0, ⌈satδ(x)⌋p = satδ(⌈x⌋p)
and

∫ x

0
satδ(⌈z⌋p)dz = s(x) ∈ C1, where

s(x) :=











1

p+ 1
|x|p+1 if |x| < δ,

δp|x| −
p

p+ 1
δp+1 if |x| ≥ δ.

(5)

Note that δp|x| − p
p+1δ

p+1 ≥ 1
p+1δ

p|x| for all |x| ≥ δ. ⊳

When the signed power and (p, δ)-saturation functions are
vector-valued, we consider them to be applied element-
wise, i.e., for any x ∈ R

m we have, respectively, ⌈x⌋p :=
[⌈x1⌋p, ..., ⌈xm⌋p]⊤ and

satδ(⌈x⌋
p) := [satδ1(⌈x1⌋

p), ..., satδm(⌈xm⌋p)]⊤.

Let us now define the following scalar function

Si(yi, pU ,Kpi, δi) :=
∑

k∈n̄

Sik(yik, pU , kpik, δik), (6)

where yi ∈ R
n, δik > 0, pU ∈ (0, 1], kpik > 0 and

Kpi := diag{kpik} ∈ R
n×n. Further,

Sik :=











kpik

pU + 1
|yik|

pU+1 if |yik| < δik,

kpikδ
pU

ik

(

|yik| −
pU

pU + 1
δik

)

if |yik| ≥ δik,

Function (6) satisfies the following properties:

P4: Si(0, pU ,Kpi, δi) = 0 and Si(yi, pU ,Kpi, δi) admits
an (r, ryi

(pU + 1))-homogeneous approximation, for all
yi ∈ Bδ

i
, where δi := min

k∈n̄
{δik} and ryi

is the weight

associated to the yi coordinate. ⊳

P5: ∇yi
Si(yi, pU ,Kpi, δi) = Kpisatδi

(⌈yi⌋
pU ) and Ṡi =

ẏ⊤
i Kpisatδi

(⌈yi⌋pU ). ⊳

P6: Si is positive definite and radially unbounded, w.r.t.
yi, and it has an isolated global minimum at yi = 0. ⊳

2.2 Homogeneity and Finite-Time Stability

Consider a dynamical system described by

ẋ = f(x), x(0) = x0 (7)

where x ∈ R
m is the state vector, f : Rm 7→ R

m is the
associated continuous vector field and m ∈ N. Assume
that the origin is an equilibrium point, i.e. f(0) = 0.

Definition 1. (Bhat and Bernstein, 2000, 2005). The ori-
gin of (7) is Finite-Time Stable (FTS) if it is Lyapunov
stable and there exists a locally bounded function T :
Bδ 7→ R≥0 (called the settling-time function) such that for
each x0 ∈ Bδ \ {0}, any solution x(t,x0) of (7) is defined
on t ∈ [0, T (x0)) and x(t,x0) = 0 for all t ≥ T (x0). If
Bδ = R

m, x = 0 is globally FTS. ⋄

Finite-time stability can be determined with homogeneity
notions.

Definition 2. (Bacciotti and Rosier, 2005). Let ri > 0,
i ∈ m̄, be the weights of the elements xi of x ∈ R

m

and define the vector of weights as r := [r1, ..., rm]⊤ ∈
R

m. Let ∆r
ǫ be the dilation operator such that ∆r

ǫx :=
[ǫr1x1, ..., ǫ

rmxm]⊤. A function V : R
m 7→ R (resp. a

vector field f : Rm 7→ R
m) is said to be r-homogeneous

of degree l ∈ R, or (r, l)-homogeneous for short, if for
all ǫ ∈ R>0 and for all x ∈ R

m the equality V (∆r
ǫx) =

ǫlV (x) (resp., f(∆r
ǫx) = ǫl∆r

ǫf(x)) holds. System (7) is
called (r, l)-homogeneous if the vector field f is (r, l)-
homogeneous. ⋄
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We highlight the fact that nonlinear systems are, in
general, non-homogeneous. However, as it occurs in the
linearization approach, homogeneous approximations (h-
approximations for short) are used to study the stability
of its equilibria (Orlov, 2009; Bacciotti and Rosier, 2005;
Andrieu et al., 2008; Zavala-Rı́o and Fantoni, 2014). The
relation between stability and h-approximations is stated
in the following lemma.

Lemma 1. (Bacciotti and Rosier, 2005). Consider system
(7) with f(x) = fH(x) + fNH(x). Suppose that 1 fH(x)
is an (r, l)-homogeneous continuous vector field such
that fH(0) = 0 is a locally Asymptotically Stable (AS)
equilibrium point of ẋ = fH(x). Assume that fNH(x) is
a continuous vector field such that fNH(0) = 0 and the
following vanishing condition lim

ǫ→0
ǫ−(l+ri)fNHi

(∆r
ǫx) = 0

holds uniformly with respect to (w.r.t.) x ∈ Sm−1
δ for

δ > 0 and all i ∈ m̄. Then, the origin of (7) is locally
AS. Furthermore, if l = 0 and all ri = 1, the origin is
locally Exponentially Stable (ES); and if l < 0, the origin
is locally FTS. ⋄

The next lemma is a direct consequence of Lemma 1,
see (Hong et al., 2002; Zavala-Rı́o and Fantoni, 2014;
Zavala-Rı́o and Zamora-Gómez, 2017; Orlov, 2009) for
other equivalent versions.

Lemma 2. Suppose that ẋ = fH(x) is a h-approximation
of (7) and the vector field fH(x) is (r, l)-homogeneous and
x = 0 is AS. Further, let x = 0 of system (7) be GAS.
Then, the origin of (7) is GAS and locally ES, if l = 0
and all ri = 1; and the origin is globally FTS if l < 0. ⋄

2.3 Interconnection Topology

We use graphs to represent the communication topology
among the agents. In particular, we employ the graph
Laplacian matrix L := {Lij} ∈ R

N×N that is defined
as Lii =

∑

j∈Ni

aij and Lij = −aij, where aij > 0 if

j ∈ Ni and aij = 0 otherwise. The set Ni contains all
the neighbors of the ith-node. For an undirected graph
aij = aji. Further, by construction, L has a zero row sum.
For an undirected and connected graph, L = L⊤ > 0, has
a single zero-eigenvalue, with the associated eigenvector
1N , and all of the other eigenvalues are strictly positive.
Thus, rank(L) = N−1. Therefore, exists α ∈ R such that
ker(L) = α1N .

Throughout the paper, we assume that there are not time-
delays in the information exchanged between EL-agents.
Also, these agents exchange information according to the
following assumption.

A1. The EL-agents interconnection graph is undirected,
static and connected. ⋄

For any x ∈ R
N , A1 ensures that

1 The vector field fH(x) is known as the h-approximation of f(x).
Similarly, an r-homogeneous function VH : Rm 7→ R is said to be
h-approximation of V : Rm 7→ R if there exists VNH : Rm 7→ R such
that V = VH + VNH and lim

ǫ7→0

ǫ−lVNH (∆r

ǫx) = 0 uniformly w.r.t.

x ∈ Sm−1

δ
, for δ > 0 Andrieu et al. (2008); Sepulchre and Aeyels

(1996).

1

2
x⊤Lx =

1

4

∑

i∈N̄

∑

j∈Ni

aij |xi − xj |
2. (8)

The following lemma establishes the uniqueness of solu-
tions of nonlinear interconnection potentials. For sake of
brevity, the proof is omitted here but it can be found in
(Cruz-Zavala et al., 2018).

Lemma 3. Consider function W(x, pW ,P), defined as

W := c1
∑

i∈N̄

∑

j∈Ni

aij(xi − xj)
⊤P⌈xi − xj⌋

pW , (9)

where xi ∈ R
n, x := col(xi) ∈ R

Nn, c1 := 1
2(pW+1) , P is a

positive definite diagonal matrix and pW ∈ (0, 1]. Then if
A1 holds, W is positive definite and radially unbounded
w.r.t. xi − xj . Moreover, there exists x⋆ ∈ R

n such that
W has a unique global minimum at x = 1N ⊗ x⋆. ⋄

2.4 Euler-Lagrange Robot Model

The EL-equations of motion of each agent can be written
in compact form as

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +∇qi
Ui(qi) = τ i (10)

where Ci(qi, q̇i) ∈ R
n×n is the Coriolis and centrifugal

forces matrix, defined via the Christoffel symbols of the
first kind.

In this work we restrict to EL-systems (10) that satisfy
the following assumptions:

A2: There exist strictly positive constants m1i and m2i,
such that m1i ≤ ‖Mi(qi)‖ ≤ m2i, ∀qi ∈ R

n. ⊳

A3: The potential energy Ui(qi) ∈ C2 is bounded from
below. Furthermore, for all qi ∈ R

n, there exists kgi > 0,
such that sup

qi∈Rn

‖∇qi
Ui(qi)‖ ≤ kgi. ⊳

Last assumption implies that there exist constants kgik > 0
such that sup

qi∈Rn

|∇qikUi(qi)| ≤ kgik, for all k ∈ n̄, where

∇qikUi(qi) is the kth-element of ∇qi
Ui(qi).

Model (10) has the following fundamental property (Kelly
et al., 2005):

P7: Matrix Ṁi(qi) − 2Ci(qi, q̇i) is skew-symmetric and
there exists Lci > 0 such that ‖Ci(qi, q̇i)q̇i‖ ≤ Lci‖q̇i‖2.
⊳

In this paper we suppose that the control input τ i is
bounded. Such a case arises when τik, the kth-element
of τ i, is subjected to the restriction |τik| ≤ τ̄ik where
τ̄ik > 0. We further assume that

A4: The bound τ̄ik is known and it is such that the
control can cancel-out the system potential energy, i.e.,
τ̄ik > kgik. ⊳

3. SOLUTION TO THE FT CONSENSUS PROBLEM
WITH BOUNDED INPUTS

Theorem 1. Suppose that Assumptions A1—A4 hold.
Set the controller

τ i = ∇qi
Ui(qi) +Kpisatδi

(

⌈θi − qi⌋
pU

)

, (11)
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with the θi dynamics is given by

θ̈i =−Kdi⌈θ̇i⌋
pF −Kpisatδi

(

⌈θi − qi⌋
pU

)

−P
∑

j∈Ni

aij⌈θi − θj⌋
pU , (12)

where Kpi,Kdi,P are diagonal positive definite matrices
and

pU :=
2r2 − r1

r1
, pF :=

2r2 − r1

r2
.

Setting kpik and δik such that

kpikδ
pU

ik < τ̄ik − kgik, (13)

ensures that the controller forces are bounded and the
actuators are not saturated and that there exists q⋆ ∈ R

n

such that: i) if 2r2 > r1 > r2 > 0 then the (LC) Problem
is globally solved in FT; and ii) if r1 = r2 = 1 then
the (LC) Problem is globally solved asymptotically and
locally solved exponentially. ⋄

Proof. First note that, from A3 and (4), it holds that
|τik| ≤ kgik + kpikδ

pU

ik . Therefore, from A4 and the fact
that (13) holds, the controller torques do not saturate the
actuators.

Let us now define q̃i := qi − q⋆ and θ̃i := θi − qi, then
the closed-loop system (10), (11) and (12) is

˙̃qi = q̇i,

q̈i =−M−1
i (q̃i + q⋆)Ci(q̃i + q⋆, q̇i)q̇i

+M−1
i (q̃i + q⋆)Kpisatδi

(

⌈θ̃i⌋
pU

)

,

˙̃
θi = θ̇i − q̇i,

θ̈i =−Kdi⌈θ̇i⌋
pF −Kpisatδi

(

⌈θ̃i⌋
pU

)

−P
∑

j∈Ni

aij⌈θi − θj⌋
pU .

(14)

Consider the following Lyapunov candidate function

V =
1

2

∑

i∈N̄

[

q̇⊤
i M

−1
i (qi)q̇i + ‖θ̇i‖

2 + 2Si(θ̃i, pU ,Kpi, δi)
]

+
1

2(pU + 1)

∑

i∈N̄

∑

j∈Ni

aij(θi − θj)
⊤P⌈θi − θj⌋

pU ,

where Si is defined in (6).

Invoking Lemma 3 and using P6, we conclude that V is
positive definite and radially unbounded w.r.t. q̇i, θ̇i, θ̃i

and ‖θi − θj‖.

Using P5, P7 and invoking, again, Lemma 3, we have
that

V̇ = −
∑

i∈N̄

θ̇
⊤

i Kdi⌈θ̇i⌋
pF = −

∑

i∈N̄

∑

k∈n̄

kdik|θ̇ik|
pU+1 ≤ 0.

The Krasovskii-LaSalle’s Invariance Theorem implies that

(q̃i, q̇i, θ̃i, θ̇i) = (0,0,0,0) (15)

is a GAS equilibrium of (14).

In order to prove that such equilibrium is GFTS we
will invoke Lemma 2. Therefore, we need to prove that
the closed-loop system (14) admits a h-approximation of
negative degree. In order to establish this fact, let us first
rewrite (14) as

˙̃qi = q̇i,

q̈i = M−1
i (q⋆)Kpi⌈θ̃i⌋

pU + fNHi(q̃i, q̇i, θ̃i)

˙̃
θi = θ̇i − q̇i,

θ̈i =−Kdi⌈θ̇i⌋
pF −Kpi⌈θ̃i⌋

pU

−P
∑

j∈Ni

aij⌈θi − θj⌋
pU + gNHi(θ̃i),

(16)

where

fNH :=
[

M−1
i (q̃i + q⋆)−M−1

i (q⋆)
]

Kpi⌈θ̃i⌋
pU

−M−1
i (q̃i + q⋆)Ci(q̃i + q⋆, q̇i)q̇i

+M−1
i (q̃i + q⋆)Kpi

(

satδi

(

⌈θ̃i⌋
pU

)

− ⌈θ̃i⌋
pU

)

,

gNH :=−Kpi

(

satδi

(

⌈θ̃i⌋
pU

)

− ⌈θ̃i⌋
pU

)

.

Clearly fNHi(0,0,0) = 0 and gNHi(0) = 0.

In what follows we assign the vectors r1 = r11n, r2 =
r21n, r3 = r1 and r4 = r2 to be the homogeneity
weights of the coordinates q̃i, q̇i, θ̃i and θ̇i, respectively.
We further define r := [r⊤1 , r

⊤
2 , r

⊤
1 , r

⊤
2 ]

⊤.

Now, on one hand, it can be easily established that the
reduced closed-loop

ΣH











































˙̃qi = q̇i,

q̈i = M−1
i (q⋆)Kpi⌈θ̃i⌋

pU

˙̃
θi = θ̇i − q̇i,

θ̈i =−Kdi⌈θ̇i⌋
pF −Kpi⌈θ̃i⌋

pU

−P
∑

j∈Ni

aij⌈θi − θj⌋
pU ,

is (r, r2 − r1)-homogeneous and, on the other hand,
the equilibrium point (15) is GAS. This last can be
established using the funtion

VH =
1

2

∑

i∈N̄

[

q̇⊤
i M

−1
i (q⋆)q̇i + ‖θ̇i‖

2 + c2θ̃
⊤

i Kpi⌈θ̃i⌋
pU

]

+
1

2(pU + 1)

∑

i∈N̄

∑

j∈Ni

aij(θi − θj)
⊤P⌈θi − θj⌋

pU ,

where c2 := 2
pU+1 .

It only rests to prove that fNH and that gNH vanish when
ǫ tends to zero.

Now, since ‖Kpi⌈ǫr1 θ̃i⌋pU ‖ = ǫ2r2−r1‖Kpi⌈θ̃i⌋pU ‖, then

lim
ǫ→0

‖
[

M−1
i (ǫr1 q̃i + q⋆)−M−1

i (q⋆)
]

Kpi⌈ǫr1 θ̃i⌋pU ‖

ǫ2r2−r1

≤ ‖Kpi⌈θ̃i⌋
pU ‖ lim

ǫ→0
‖M−1

i (ǫr1 q̃i + q⋆)−M−1(q⋆)‖ = 0,

Similarly, from A2 and P10, there exists αi > 0 such
that

lim
ǫ→0

‖M−1
i (ǫr1 q̃i + q⋆)Ci(ǫ

r1 q̃i + q⋆, ǫ
r2 q̇i)ǫ

r2 q̇i‖

ǫ2r2−r1

≤ αi‖q̇i‖
2 lim
ǫ→0

ǫr1 = 0.

Finally, the last term of fNH satisfies

lim
ǫ→0

‖M−1

i
(ǫr1 q̃i + q⋆)Kpi

(

satδi

(

⌈ǫr1 θ̃i⌋pU
)

− ⌈ǫr1 θ̃i⌋pU
)

‖

ǫ2r2−r1
= 0,
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when ǫr1 θ̃i ∈ Bδ
i
, because in such a case satδi

(

⌈ǫr1 θ̃i⌋pU

)

=

⌈ǫr1 θ̃i⌋pU and for all bounded θ̃i ∈ R
n, ǫr1‖θ̃i‖ → 0 as

ǫ → 0. gNH also vanishes due to the same facts.

Hence, since ΣH is a (r, r2 − r1)−homogeneous for all

q̃i, q̇i, θ̃i, θ̇i ∈ R
n, ΣH will be a homogenous approxima-

tion of the closed-loop (14), as required. This completes
the proof. ⊳

In order to improve performance, the controller can also
incorporate linear terms, this result is stated in the
following proposition. Its proof is omitted for sake of
space.

Proposition 3. Theorem 1 holds replacing (11) by

τ i = ∇qi
Ui(qi) +Kpisatδi

(

⌈θ̃i⌋
pU

)

+Kpisatδi

(

θ̃i

)

,

and (12) by

θ̈i =−Kdi⌈θ̇i⌋
pF −Kpisatδi

(

⌈θ̃i⌋
pU

)

−Kpisatδi

(

θ̃i

)

−P
∑

j∈Ni

aij⌈θi − θj⌋
pU ,

provided that kpik(δ
pU

ik + δik) < τ̄ik − kgik. ⋄

4. SIMULATIONS

This section provides a simulation comparison with differ-
ent control schemes for a network of ten 2-DoF nonlinear
manipulators with revolute joints. The dynamics are bor-
rowed from (Nuño, 2017).

The ten-agent network is composed of three different
groups of robot manipulators and the manipulators at
each group have the same physical description. The phys-
ical parameters, for each group, are: m1 = 4kg, m2 = 2kg
and l1 = l2i = 0.4m, for Agents 1, 2 and 3; m1 = 2.5kg,
m2 = 3kg, l1 = 0.3m and l2 = 0.5m for Agents 4, 5 and
6; m1 = 3kg, m2 = 2.5kg, l1 = 0.5m and l2 = 0.2m for
Agents 7, 8, 9 and 10.

The network interconnection Laplacian matrix is given by
L = 0.1Lg, where

Lg =

























14 0 −3 0 0 0 0 −4 0 −7
0 14 0 −8 0 0 0 0 0 −6
−3 0 7 0 0 0 0 −4 0 0
0 −8 0 10 0 0 0 0 −2 0
0 0 0 0 8 0 −5 0 −3 0
0 0 0 0 0 6 0 −4 −2 0
0 0 0 0 −5 0 14 0 0 −9
−4 0 −4 0 0 −4 0 12 0 0
0 0 0 −2 −3 −2 0 0 7 0
−7 −6 0 0 0 0 −9 0 0 22

























The initial conditions are set as ˙̃
θ(0) = ˙̃q(0) = 0 and

θ(0) = q(0) where

q⊤(0) = [−2, 6,−7, 3,−5,−1,0, 1,−6, 2, 1, 0,−4, 5,

− 3, 4,−2, 7,−1, 1].
(17)

Three different controllers are simulated in this section.
The structure of the first and second schemes is the one re-
sulting from Theorem 1. The third controller results from
Proposition 3. The values of the homogeneous weights
are: r1 = r2 = 1 for Controller 1; r1 = 1.3 and r2 = 1
for Controller 2; and r1 = 1.3 and r2 = 1 for Controller

3. These weights ensure that Controllers 2 and 3 induce
finite-time convergence to the consensus position.

The gains are the same for the three schemes and they
have been set as: Kpi = 5I, P = 8I and P = 20I for all
the ten robots. It is assumed that τ̄ik = 4 for all the
robots and for the two degrees of freedom. Therefore,
three different values of δik are obtained for the three
controllers, namely 0.75, 0.6 and 0.25, respectively.

Fig. 1 shows the position performance of the three differ-
ent controllers. It can be concluded that the FT schemes
have a more damped behavior.
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Controller 2 Controller 3Controller 1

Fig. 1. Leaderless consensus comparison with input satu-
ration and with the initial positions given in (17).

In order to measure the performance of the three different
schemes, the following Root-Mean-Square error quality
measure is employed

yRMS :=

√

1

T

∫ T

0

‖(Lℓ ⊗ In)q̃(σ)‖2dσ. (18)

Such value measures how disperse are the agents of the
network.

The numerical values of (18) for the three controllers
are: 3.6766; 4.9207 and 3.3671, respectively. It should be
underscored that the linear scheme, Controller 1, outper-
forms the simplest FT scheme, Controller 2. However, the
FT scheme Controller 3 has exhibit better performance.

We have further added noise in the measurements of qi

and analyzed the quality measure yRMS . Such noise is the
output of a normal Gaussian distributed random signal
with mean equal to 0.02 and variance equal to 0.001. The
numerical values are: 3.7075; 4.9589 and 3.4333, respec-
tively. Again, Controller 3 has exhibit better robustness
w.r.t. this added noise.

5. CONCLUSIONS

In this paper we present a novel controller that provides a
solution to the finite-time leaderless consensus problem in
networks of multiple EL-systems without making use of
velocity measurements and with bounded control inputs.
The proposed decentralized controller has a dynamic
behavior ruled by the EL-equations of motion. Global FT
stability is concluded by means of homogeneity notions.
Simulations show the effectiveness of our proposal.
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homogeneity-based global continuous control for me-
chanical systems with constrained inputs: finite-time
and exponential stabilisation. International Journal of
Control, 90(5), 1037–1051.

Zhao, Y., Duan, Z., and Wen, G. (2015). Distributed
finite-time tracking of multiple Euler-Lagrange systems
without velocity measurements. International Journal
of Robust and Nonlinear Control, 25(11), 1688–1703.

San Luis Potosí, San Luis Potosí, México, 10-12 de Octubre de 2018 151 Copyright©AMCA. Todos los Derechos Reservados www.amca.mx


