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Abstract: About 30% of the elderly population of the USA exhibits a motor impairment that
inhibits daily activities and increases the probability of a fall. The ability of individuals to
maintain proper balance is largely dependent on their control over their hip and ankle joints.
Studying the mechanical behavior of these joints is important for the analysis of balancing
compensatory motions. This paper presents a human balancing model based on a double
inverted pendulum whose segments (representing the thorax and legs) are joined by a spring-
damper system, creating a second order Kelvin-Voigt system. The model presented here allows
for the estimation of constant apparent joint visco-elastic parameters when presented with
a disturbance. The paper outlines the deduction of the model, shows initial results for the
estimation of joint parameters using both simulated and experimental data.

Keywords: Visco-elastic parameters, Parameter estimation, Recursive estimation, Least
squares, Dynamic model.

1. INTRODUCTION

Around 30% of the eldery population in the USA suffers
from a form of motor impairment (Menz et al., 2005).
This is known to have an influence in the high percentage
of deaths this population experiences after suffering from
a fall, especially when resulting in a broken leg or hip.
Additionally, the low activity level which usually follows
such events further negatively influences the health of
the subject’s cardio-respiratory system. This justifies the
study of the human balance as a means of reducing fall
risks. We seek to understand the stability margins of
the human balancing system and how it is affected by
the changes in the visco-elastic parameters of the joints.
These parameters are task generally task dependent and
obtaining their ranges could have clinical applications.
For example, they could be used for early detection of fall
risks or evaluating a subject’s improvement after physical
rehabilitation.

This article presents a second order dynamic model ca-
pable of describing human motion while balancing on the
sagital plane. The model we derive can be thought of as an
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extension of the one presented by Chavez-Romero et al.
(2014); it includes a hip joint and allows for the system’s
non-linearities. The dynamic model and parameter esti-
mation are validated using simulations and experimental
data. We then estimate the apparent joint stiffness and
damping (Roberts and Azizi, 2011) using the hold and re-
lease paradigm proposed by Bortolami et al. (2003) while
measuring only joint angles. Furthermore, the proposed
dynamic model for parameters estimation can be applied
in real-time.

2. A SECOND ORDER MODEL FOR BALANCING

It is possible to model the movement of the hip and
ankle joints using a double inverted pendulum such as the
one shown in Fig. 1-a). The pendulum’s segments, repre-
senting the subject’s legs and torso-head, are connected
using a single degree-of-freedom joint and visco-elastic
elements which act as the muscles and tendons (Piovesan
et al., 2015). A second joint, with similar characteristics,
connects the legs to the feet which are considered solidly
attached to the ground. It is possible to estimate the
apparent stiffness and damping at the joint by modeling
the model’s dynamics as described in Fig. 1-b).
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a) b)

Fig. 1. A mechanical model representing balance using
the hip strategy. a) Shows a sagittal plane view,
while b) shows the double pendulum with visco-
elastic parameters model developed.

The dynamic model can be obtained using the Euler-
Lagrange formalism as follows (Meirovitch, 2010): Take
the mass of the i-th segment is written as mi, the distance
between two consecutive joints li, the segment’s center of
mass position as measured from the distal joint as ri gives,
and the joint stiffness and damping represented by ki and
bi respectively. Additionally, the generalized coordinates
of the system are defined as q = [ θ1 θ2 ]. Using the unit

vector î running parallel to the ground plane and ĵ with a
positive direction contrary to that of the action of gravity,
the position of each mass (rmi

) is found to be:

rm1
=−r1 sin θ1î+ r1 cos θ1ĵ (1)

rm2
= (−l1 sin θ1 + r2 sin θ21)̂i+

(l1 cos θ1 + r2 cos θ21)ĵ (2)

where θ21 = θ2 − θ1

The system’s total kinetic energy is defined in terms of
the segments’ speed (ṙm) as:

T =
1

2

(

m2

(

l21θ̇
2
1 + r22 θ̇

2
21 − 2l1l2θ̇1θ̇21 cos θ2

)

+

m1r
2
1 θ̇1

2

+ I1θ̇
2
2 + I2θ̇

2
21

)

(3)

where Ii is the moment of inertia of segment i.

The system’s total potential energy, including that stored
in the elastic elements, is given by:

V =m1gr1 cos θ1 +m2g (l1 cos θ1 + r2 cos θ21) +

1

2

(

k1θ
2
1 + k2θ

2
2

)

(4)

Finally, the energy dissipated by the dampers is (Ogata,
1998):

D =
1

2

(

b1θ̇
2
1 + b2θ̇

2
2

)

(5)

The Lagrangian is then defined as: (6).

L= T − V

Q̂k =
∑

j=1

Fj ·
∂pj

∂q̂k
=

d

dt

∂L

∂ ˙̂qk
−

∂L

∂q̂k
+

∂D

∂ ˙̂qk
(6)

where qk is the k-th generalized coordinate and Fj cor-
responds to any forces acting on the system at point pj .

Assuming that no forces act on the system (Q̂k = 0)
it is possible to write the pendulum’s dynamics as the
following second order system:

Mθ̈ +Cθ̇ +G = τ (7)

where:

θ= [ θ1 θ2 ]
T

M=

[

α+ 2β cos θ2 − (γ + β cos θ2)
− (γ + β cos θ2) γ

]

C=

[

−2βθ̇2 sin θ2 βθ̇2 sin θ2
βθ̇1 sin θ2 0

]

G=

[

ǫ sin θ21 − δ sin θ1
−ǫ sin θ21

]

τ =−

[

k1θ1 + b1θ̇1
k2θ2 + b2θ̇2

]

α= I1 + I2 +m1r
2
1 +m2

(

l21 + r22
)

β =m2l1r2

γ = I2 +m2r
2
2

δ = (m1r1 +m2l1) g

ǫ=m2r2g

and g is the constant acceleration of gravity. We consider
that the torque generated by the joint stiffness and
damping parameters is such that the vertical orientation
of the body segments corresponds to the equilibrium
position.

Notice that the dynamics of the system presented in
Fig. 1-b) is written only in terms of the measurable
angular values θ1 and θ2.

2.1 Parameter Estimation

It is possible to rewrite the second order model (7) as a
linear function of the joint’s visco-elastic parameters as
follows:

Z=Hλ = −τ (8)

H=

[

θ1 θ̇1 0 0

0 0 θ2 θ̇2

]

(9)
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where λ contains the desired stiffness and damping pa-
rameters:

λ =







k1
b1
k2
b2






(10)

Details regarding parameter estimation Consider the
following linear system

Z = Hλ̂+ ρ (11)

were Z is a measurement vector, λ̂ are the system’s
estimated linear parameters, ρ an estimation error vector,
and H is known as the configuration matrix.

Least Squares Estimation Each row of Z and H rep-
resents one equation which can be used to solve the
linear system defined by (8). Ideally, there should be
at least enough linearly independent measurements such
that H is squared and invertible. In practice, measure-
ments can be joined to create an overdetermined sys-
tem (Khalil and Dombre, 2004). It is then possible to

find a vector λ̂ = H+Z such that iEuclidean norm of ρ
is minimized (Mooring et al., 1991). The Moore-Penrose
pseudoinverse (Penrose, 1955) is generally used for this

where H+ =
(

HTH
)

−1

HT

Recursive Methods It is also possible to make use of a
recursive method such as the Kalman filter to estimate
a set of constant parameters (Simon, 2006). The Kalman
filter equations are written as:

λ̂
+

k =Aλ̂−

k +Bµk (12)

P+

k =AP−

k A
T +Q (13)

Kk =P−

k H
T
(

HP−

k H
T +R

)

−1

(14)

λ̂k = λ̂
−

k +Kk

(

Zk −Hλ̂
−

k

)

(15)

Pk = (I−KkH)P−

k (16)

where A and B determine how the models parameters
(λ) change over time; P, Q and R are the estimation,
process and measurement variance and covariance matri-
ces respectively; Z is the measurement vector; H is the
configuration matrix; K is the Kalman gain; and I is an
identity matrix of suitable size.

2.2 Estimating the model parameters using simulated
data

In order to create a set of data suitable for the parameter
estimation outlined before, the second order model (7)
was solved numerically using a fourth order Runge-Kutta
approximation using a fixed step of 1 ms and the initial

conditions presented in Table 1. Thirty seconds of sim-
ulated data were obtained. The required biomechanical
parameters (segment masses and lenghts) were obtained
from anthropometric tables (Winter, 2009) and corre-
spond to a 1.7 m tall subject weighing 85 kg. They can be
found in Table 2. The initial conditions given in Table 1
were chosen to comply with the hold and release method
outlined by Bortolami et al. (2003), resulting in a life-
like motion, and keeping the pendulum’s overall center of
mass within a distance from the ankle joint no larger than
the subject estimated foot size.

Table 1. Inital conditions for numerical
simulation.

Initial condition

θ1 -0.17 rad θ2 0 rad

θ̇1 0 rad/s θ̇2 0 rad/s

Table 2. Parameters used for the simulation of
the second order model of human balance.

Param. Value Param. Value

M 85 kg k1 1050 Nm/rad
h 1.7 m b1 30 Nms/rad
m1 0.322M kg k2 500 Nm/rad
m2 0.678M kg b2 10 Nms/rad
l1 0.53h m
r1 0.29h m
r2 0.18h m

The model’s parameters were estimated using the least
squares and recursive approaches introduced in the previ-
ous section. The estimated visco-elastic parameter values

(λ̂ideal) were obtained after substituting the values of θ

from simulation and θ̇, and θ̈ calculated numerically in
Z and H. In an attempt to reduce estimation errors due
to phase shift, the central differences method was used
for calculating the time derivatives (Khalil and Dombre,
2004).

To accurately replicate a real-world experiment, normally
distributed noise was added to the orientation of each
segment obtained from simulation. Prior to calculating
the derivatives, it was then necessary to remove some
high frequency noise introduced. This was done using
a zero-phase, low-pass Butterworth filter with a cut-off
frequency of 25 Hz (Khalil and Dombre, 2004) and is
required as angular velocity and acceleration can only be
obtained through numerical methods.

The filtered values for angular position, velocity and
acceleration are used to estimate the value of the model’s
visco-elastic parameter using a least squares approach

(λ̂LSM ) by substituting them in Z and H. They were also

used to estimate the parameters’ value (λ̂KF ) by means
of a Kalman filter.

To evaluate the accuracy of the parameter estimation we

define the error as ei = Z−Hiλ̂i. This error will be null
when λ̂ = λ. For the sake of readability we report only
its average and standard deviation
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Fig. 2. Prototype built to validate the parameter esti-
mation procedure. The stiffness at the joints was
simulated using linear springs between the joints. To
reduce friction, all contact surfaces were covered with
teflon.

3. PARAMETER ESTIMATION USING
EXPERIMENTAL DATA

A double inverted pendulum prototype was built (see
Figure 2) to test the parameter estimation protocol de-
scribed in the previous section. Linear springs were used
to stiffen the prototype’s joints. The size and mass of
its segments was measured and are presented in Table 3.
For the configuration shown in Figure 2, and for small
angular displacements it is expected that the rotational
stiffness kr = klr

2; where kr is the rotational stiffness kl
is the linear stiffness of the spring and r the correspond-
ing moment arm. Four linear springs with a constant of
850 N/m were used on the model’s first joint (simulating
the ankle) and were placed to have a moment arm of
74.2 mm around it. In the same way two springs with
a constant of 690 N/m were used on the second joint
(hip) and placed to have a moment arm of 37.1 mm.
Additionally the resting lengths of the springs are such
that while the prototype is in motion two of the spring
at the ankle joint may become relaxed while the ones
at the hip joint remain taut. That is, the approximated
stiffness of the joints is expected to be of 9.38 Nm/rad
and 1.88 Nm/rad for the prototype’s ankle and hip joints
respectively. To reduce friction all contact surfaces were
coverts with teflon. Other than friction and air resistance,
no damping elements were considered.

Table 3. Measured model parameters for a
double inverted pendulum.

Param. Value Param. Value

m1 0.25 kg k1 9.38 Nm/rad
m2 0.20 kg b1 unknown Nms/rad
l1 0.53 m k2 1.88 Nm/rad
r1 0.27 m b2 unknown Nms/rad
r2 0.23 m

During the experiment the pendulum was moved to a ran-
dom initial position, held there at rest, and then suddenly

released. The orientation of each segment was measured
by tracking three passive markers (corresponding to the
ankle, hip, and head of the prototype) using the open
sourced software Kinovea. The sampling frequency was
that of the RBG-cameras used and averaged 22.5 fps.
In order to obtain an overdetermined system for the
parameters estimation the experiment was repeated eight
times and the respective measurements aggregated.

Data from one additional was obtained for validation.
This was done by predicting the angular displacement of
the prototype by means of a numerical simulation, and
comparing it to the measured data.

4. DISCUSSION AND RESULTS

Table 4. Estimated values and estimation
error for the second order model’s visco-elastic

parameters.

Param. λ̂ideal λ̂LSM λ̂KF

k̂1 1050.0 1084.1 931.5 Nm/rad

b̂1 30.0 28.6 39.9 Nms/rad

k̂2 500.0 506.0 388.1 Nm/rad

b̂2 10.0 8.3 6.7 Nms/rad
mean(ρ) −0.72E − 6 −1.53E − 2 −0.17E − 2 Nm
std(ρ) 8.9E − 9 0.21 0.21 Nm

Table 5. Prototype’s estimated visco-elastic
parameter.

Param. λ̂

k̂1 9.84 Nm/rad

b̂1 0.16 Nms/rad

k̂2 1.86 Nm/rad

b̂2 0.02 Nms/rad

Angular trajectories obtained through the numerical so-
lution of (7) are shown in Fig. 3. The blue line represents
the noisy angular values while the red dashed line shows
the values after filtering using a zero-phase Butterwoth
filter. A good match, with no visible phase shift, between
both curves is observed.

Using the data obtained from simulation Table 4 shows
the values obtained for the model’s visco-elastic parame-
ter estimated from noiseless data and from filtered data
using the least squares and the Kalman filter approaches.
Figure 4 shows the evolution of the parameter estimate
using the recursive approach. Table 4 also shows the
average and standard deviation error obtained with each
parameter vector. Notice that while the parameters es-
timated with each method vary, the estimation error is

small for all three vectors. That is, while λ̂ideal estimated

the parameter values exactly, both λ̂LSM and λ̂KF con-
tain suitable values for modeling the simulated data.

These results assume constant visco-elastic parameters.
However, muscle contraction will change the apparent
stiffness of the joint (Roberts and Azizi, 2011) possibly
making the least squares approach unsuitable. This is not
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Fig. 3. Simulated angular value for the orientation of each of the model’s segment. The blue line represents the noisy
angular values while the red dashed line shows the values after the application of the zero-phase Butterworth
filter.

Fig. 4. Estimated values for the model’s visco-elastic parameter using a recursive method from low-pass filtered noisy
data. The blue line shows the evolution of the parameter value as more information is available. The red dashed
line shows the value used for simulation.

as limitation of the dynamic model (7) and may favor the
implementation of the Kalman Filter as it can be used to
estimate time-changing parameters.

Regarding the prototype, its estimated values are given
in Table 5. Figure 5 shows: in blue the measured angular
trajectory obtained with the prototype for a validation
trial not used for the parameter estimation, while the red
dashed line is the prototype’s predicted trajectory using

the estimated parameter values. Overall there is a good
match with respect to peak height, but the measured data
seems to have a higher natural frequency. This is partially
explained as the estimated parameters assume a linear
behavior of the equivalent rotation spring which may not
be the case due to large angles between its segments. It is
may also be the case that an improper sampling frequency
from the RGB-camera contributed to the estimation error
of the prototype’s damping. Note from Figures 3 and 5
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Fig. 5. Angular trajectory validation for the prototype using the estimated values for the visco-elastic parameters.
The blue line is the measured trajectory on a validation trial (not used for parameter estimation) while the red
dashed line is the prototype’s predicted trajectory.

that the prototype exhibits a higher resonant frequency
than the simulated human by almost a factor of five and
thus a higher sampling frequency is desired.

5. CONCLUSION

The results presented here show the feasibility of esti-
mating stiffness and damping parameters in human joints
while balancing. Future work should focus on using ex-
perimental data gathered from human subjects. It should
also focus on the estimation of visco-elastic parameters of
both tendons and muscles in the ankle and hip joints by
extending the third order model proposed by Coronado
et al. (2015) by allowing for a hip joint.
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