Chavez, Gustavo | Universidad Nacional Autonoma de Mexico |
Gonzalez-Olvera, Marcos A. | Universidad Autónoma de la Ciudad de México |
https://doi.org/10.58571/CNCA.AMCA.2023.025
Resumen: This work presents a robust observer-based approach for parameter identification and state estimation in fractional-order SIR and SEIR models, applied to analyze the spread of the SARS-CoV-2 Omicron variant in Mexico from December 26, 2021, to March 26, 2022. By utilizing measurements of changes in the infected population, a robust observer is proposed to reconstruct the transmission rate within the fractional model. The method accounts for noisy measurement cases and incorporates parametric reconstruction and state observation. The proposed approach is demonstrated through numerical results, showcasing its capabilities in effectively estimating parameters and states. The findings of this study have implications for formulating strategies to prevent, slow, and halt the spread of infectious diseases, offering valuable insights for combating future disease outbreaks.
¿Cómo citar?
Chavez, Gustavo; Gonzalez-Olvera, Marcos A. Robust Observer-Based Parameter Identification and State Estimation for COVID-19 Modeling: Analyzing the Omicron Variant in Mexico using Fractional-Order SIR and SEIR Models. Memorias del Congreso Nacional de Control Automático, pp. 50-55, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.025
Palabras clave
Modelado e Identificación de Sistemas; Sistemas Biomédicos; Otros Tópicos Afines
Referencias
- Allen, L., Brauer, F., van den Driessche, P., Bauch, C., Wu, J., Castillo-Chavez, C., Earn, D., Feng, Z., Lewis, M., Li, J., et al. (2008). Mathematical Epidemiology. Springer Berlin Heidelberg.
- Angstmann, C., Henry, B., and McGann, A. (2016). A fractional order recovery sir model from a stochastic process. Bulletin of Mathematical Biology, 78. doi:10.1007/s11538-016-0151-7.
- Arroyo-Marioli, F., Bullano, F., Kucinskas, S., and Rond´on-Moreno, C. (2021). Tracking r of covid-19: A new real-time estimation using the kalman filter. PloS one, 16(1), e0244474.
- Bavdekar, V.A., Deshpande, A.P., and Patwardhan, S.C. (2011). Identification of process and measurement noise covariance for state and parameter estimation using extended kalman filter. Journal of Process Control, 21(4), 585-601. doi:https://doi.org/10.1016/j.jprocont.2011.01.001.
- Dehning, J., Zierenberg, J., Spitzner, F.P., Wibral, M., Neto, J.P., Wilczek, M., and Priesemann, V. (2020). Inferring change points in the spread of covid-19 reveals the effectiveness of interventions. Science, 369(6500). doi:10.1126/science.abb9789.
- DGE, S.d.S. (2023). Covid-19 tablero México conacyt-centrogeo-geoint-datalab. https://datos.covid-19.conacyt.mx.
- Hanert, E., Schumacher, E., and Deleersnijder, E. (2011). Front dynamics in fractional-order epidemic models. Journal of Theoretical Biology, 279(1), 9-16. doi:https://doi.org/10.1016/j.jtbi.2011.03.012.
- Islam, M.R., Peace, A., Medina, D., and Oraby, T. (2020). Integer versus fractional order seir deterministic and stochastic models of measles. International Journal of Environmental Research and Public Health, 17(6). doi:10.3390/ijerph17062014.
- Khaki, M., Hendricks Franssen, H.J., and Han, S. (2020). Multi-mission satellite remote sensing data for improving land hydrological models via data assimilation. Scientific reports, 10(1), 1-23.
- Koyama, T., Weeraratne, D., Snowdon, J.L., and Parida, L. (2020). Emergence of drift variants that may affect covid-19 vaccine development and antibody treatment. Pathogens, 9(5). doi:10.3390/pathogens9050324.
- Liu, M., Cao, J., Liang, J., and Chen, M. (2019). Epidemic-logistics Modeling: A New Perspective on Operations Research. Springer Singapore.
- Massonis, G., Banga, J.R., and Villaverde, A.F. (2021). Structural identifiability and observability of compartmental models of the covid-19 pandemic. Annual reviews in control, 51, 441-459.
- Mendes, E.M., Salgado, G.H., and Aguirre, L.A. (2019). Numerical solution of caputo fractional differential equations with infinity memory effect at initial condition. Communications in Nonlinear Science and Numerical Simulation, 69, 237-247. doi:https://doi.org/10.1016/j.cnsns.2018.09.022.
- Muhlmeyer, M. and Agarwal, S. (2021). Information Spread in a Social Media Age: Modeling and Control. CRC Press.
- Murillo-Zamora, E., Trujillo, X., Huerta, M., Ríos-Silva, M., Lugo-Radillo, A., Baltazar-Rodríguez, L., and Mendoza-Cano, O. (2022). First-generation bnt162b2 and azd1222 vaccines protect from covid-19 pneumonia during the omicron variant emergence. Public Health, 207, 105-107. doi:https://doi.org/10.1016/j.puhe.2022.04.001.
- Ridenhour, B., Kowalik, J.M., and Shay, D.K. (2018). El número reproductivo básico (r0): consideraciones para su aplicación en la salud pú American Journal of Public Health, 108(S6), S455-S465. doi:10.2105/AJPH.2013.301704s.
- Rojo Enríquez, A., Escamilla Llano, P., Rodríguez Sandoval, R., Medina Arias, L., García Franco, M.I., Ramírez De La, L., López Martínez, I., Wong Arámbula, C., Rodríguez Maldonado, A., Rivero Arredondo, V., et al. (2022). Detección del primer caso de covid-19 relacionado a la variante ómicron en Mé Acta médica Grupo Ángeles, 20(1), 62-66.
- Skwara, U., Martins, J., Ghaffari, P., Aguiar, M., Boto, J., and Stollenwerk, N. (2012). Fractional calculus and superdiffusion in epidemiology: shift of critical thresholds. In Proceedings of the 12th International Conference on Computational and Mathematical Methods in Science and Engineering, La Manga.
- Solís-Pérez, J., Gómez-Aguilar, J., Torres, L., Escobar-Jiménez, R., and Reyes-Reyes, J. (2019). Fitting of experimental data using a fractional kalman-like observer. ISA Transactions, 88, 153-169. doi:https://doi.org/10.1016/j.isatra.2018.11.036.
- Sun, Y., Wang, Y., Wu, X., and Hu, Y. (2018). Robust extended fractional kalman filter for nonlinear fractional system with missing measurements. Journal of the Franklin Institute, 355(1), 361-380. doi:https://doi.org/10.1016/j.jfranklin.2017.10.030.