Angel Verdugo, Jesus Alejandro | CITEDI IPN |
Ferreira de Loza, Alejandra | Instituto Politécnico Nacional |
Aguilar, Luis T. | Instituto Politécnico Nacional |
Resumen: En este trabajo se presenta un control robusto continuo para seguimiento de trayectoria en un cuadrotor. La estrategia propuesta hace uso de un observador por modos deslizantes de orden superior (OMDOS) que estima el estado e identifica las perturbaciones presentes en las dinámicas actuadas. Posteriormente los efectos de las perturbaciones son compensados a través del control. Además, se presenta el análisis de estabilidad del esquema controlador-observador vía una función de Lyapunov y se ilustra el desempeño del controlador propuesto en la plataforma experimental Quanser QBall 2
¿Cómo citar?
Jesus A. Angel-Verdugo, Alejandra Ferreira de Loza & Luis T. Aguilar. Rechazo Activo de Perturbaciones en un Cuadrotor Usando Modos Deslizantes de Orden Superior (I). Memorias del Congreso Nacional de Control Automático, pp. 109-114, 2019.
Palabras clave
Control Robusto, Control Discontinuo (modos deslizantes), Control de Sistemas No Lineales
Referencias
- Aghdam, A.S., Menhaj, M.B., Barazandeh, F., and Abdollahi, F. (2016). Cooperative load transport with movable load center of mass using multiple quadrotor uavs. In 4th International Conference on Control, Instrumentation, and Automation (ICCIA), 23–27.
- Almurib, H.A.F., Nathan, P.T., and Kumar, T.N. (2011). Control and path planning of quadrotor aerial vehicles for search and rescue. In SICE Annual Conference 2011, 700–705.
- Colorado, J., Devia, C., Perez, M., Mondragon, I., Mendez, D., and Parra, C. (2017). Low-altitude autonomous drone navigation for landmine detection purposes. In International Conference on Unmanned Aircraft Systems (ICUAS), 540–546.
- Cruz-Zavala, E. and Moreno, J.A. (2018). Levant’s arbitrary order exact differentiator: A Lyapunov approach. IEEE Transactions on Automatic Control, 1–1.
- Dávila, J. and Salazar, S. (2017). Robust control of an uncertain uav via high-order sliding mode compensation. IFAC-PapersOnLine, 50(1), 11553 – 11558. 20th IFAC World Congress.
- Derafa, L., Benallegue, A., and Fridman, L. (2012). Super twisting control algorithm for the attitude tracking of a four rotors uav. Journal of the Franklin Institute, 349(2), 685 – 699. Advances in Guidance and Control of Aerospace Vehicles using Sliding Mode Control and Observation Techniques.
- Kaufman, E., Takami, K., Ai, Z., and Lee, T. (2018). Autonomous quadrotor 3d mapping and exploration using exact occupancy probabilities. In Second IEEE International Conference on Robotic Computing (IRC), 49–55.
- Khalil, H.K. (2015). Nonlinear control. Pearson New York.
- Madani, T. and Benallegue, A. (2006). Backstepping sliding mode control applied to a miniature quadrotor flying robot. In 32nd Annual Conference on IEEE Industrial Electronics, 700–705.
- Pérez-Alcocer, R., Moreno-Valenzuela, J., and Miranda Colorado, R. (2016). A robust approach for trajectory tracking control of a quadrotor with experimental validation. ISA Transactions, 65, 262 – 274.
- Qin, L., Zhou, W., Li, L., and Jiang, W. (2017). Active disturbance rejection control system design for quadrotor. In 2017 36th Chinese Control Conference (CCC), 6530–6534.
- Ríos, H., González-Sierra, J., and Dzul, A. (2017). Robust tracking output-control for a quad-rotor: A continuous sliding-mode approach. Journal of the Franklin Institute, 354(15), 6672 – 6691.
- Shraim, H., Awada, A., and Youness, R. (2018). A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerospace and Electronic Systems Magazine, 33(7), 14–33.
- Yang, H., Cheng, L., Xia, Y., and Yuan, Y. (2018). Active disturbance rejection attitude control for a dual closedloop quadrotor under gust wind. IEEE Transactions on Control Systems Technology, 26(4), 1400–1405.
- Zuo, Z. (2010). Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Applications, 4(11), 2343–2355.