Rojas, Michael | Universidad Nacional Autónoma De México |
Vieyra Valencia, Natanael | Universidad Nacional Autónoma De México |
Resumen: This paper will exhibit a design and performance comparison between two different estimation techniques in a Single Machine Infite Bus (SMIB) system, these techniques are Extended Kalman Filter observer which is a classic estimator that has been used in the power systems for almost forty years and a non linear observer whose design is based on non linear mathematical model.
A Comparative Study of State Estimation Methodologies for Electric Power Systems
Size: 576 KB
Total descargados hasta ahora
175 Downloads
¿Cómo citar?
Michael Rojas & Natanael Vieyra. A Comparative Study of State Estimation Methodologies for Electric Power Systems. Memorias del Congreso Nacional de Control Automático, pp. 255-260, 2019.
Palabras clave
Sistemas Eléctricos de Potencia, Otros Tópicos Afines
Referencias
- Alhelou, H.H., Golshan, M.H., and Askari-Marnani, J. (2018). Robust sensor fault detection and isolation scheme for interconnected smart power systems in presence of rer and evs using unknown input observer. International Journal of Electrical Power & Energy Systems, 99, 682–694.
- Alvarez, J. and Fernández, C. (2009). Geometric estimation of nonlinear process systems. Journal of process control, 19(2), 247–260.
- Bishop, G., Welch, G., et al. (2001). An introduction to the kalman filter. Proc of SIGGRAPH, Course, 8(27599-23175), 41.
- Ghahremani, E. and Kamwa, I. (2015). Local and widearea pmu-based decentralized dynamic state estimation in multi-machine power systems. IEEE Transactions on Power Systems, 31(1), 547–562.
- Kwakernaak, H. and Sivan, R. (1972). Linear optimal control systems, volume 1. Wiley-interscience New York.
- Machowski, J., Bialek, J., and Bumby, J. (2011). Power system dynamics: stability and control. John Wiley & Sons.
- Milano, F. (2010). Power system modelling and scripting. Springer Science & Business Media.
- Sauer, P.W. and Pai, M.A. (1998). Power system dynamics and stability, volume 101. Prentice hall Upper Saddle River, NJ.
- Shoukry, Y., Chong, M., Wakaiki, M., Nuzzo, P., Sangiovanni-Vincentelli, A., Seshia, S.A., Hespanha, J.P., and Tabuada, P. (2018). Smt-based observer design for cyber-physical systems under sensor attacks. ACM Transactions on Cyber-Physical Systems, 2(1), 5.
- Tebianian, H. and Jeyasurya, B. (2013). Dynamic state estimation in power systems using kalman filters. In 2013 IEEE Electrical Power & Energy Conference, 1– 5. IEEE.
- Zhou, N., Meng, D., Huang, Z., and Welch, G. (2014). Dynamic state estimation of a synchronous machine using pmu data: A comparative study. IEEE Transactions on Smart Grid, 6(1), 450–460.
- Ziping, W., Wenzhong, G., Tianqi, G., Weihang, Y., Zhang, H., Shijie, Y., and Xiao, W. (2018). Stateof-the-art review on frequency response of wind power plants in power systems. Journal of Modern Power Systems and Clean Energy, 6(1), 1–16.