Barajas-Ramirez, Juan Gonzalo | IPICYT |
Resumen: We propose a design methodology to construct piecewise linear systems with attractors of different number and distribution of scrolls. We investigate the underlying chaos generating mechanisms of benchmark chaotic systems, then we propose variants based in these benchmark structures that result in new alternative attractors. Unlike previous methods our method is not based on adding equilibrium points on the system, instead we manipulate the eigenvalues and eigenspaces of the existing linear subsystems of the systems to produce or inhibit the formation of scrolls. To illustrate the effectiveness of our proposed method we show new attractors with different symmetries and number of scrolls based on some well-known chaotic systems.
¿Cómo citar?
Juan Gonzalo, Barajas-Ramírez. Anticontrol of Linear Systems: New Chaotic Attractors. Memorias del Congreso Nacional de Control Automático, pp. 737-742, 2019.
Palabras clave
Sistemas Caóticos, Control de Sistemas No Lineales, Control de Sistemas Lineales
Referencias
- Wang X. F. and Chen G. Chaos in Circuits and Systems, World scientific, Singapore, 2002.
- Campos-Cantón, E., Femat, R., Barajas-Ramírez, J. G., Campos-Cantón, I. A Multivibrator Circuit Based On Chaos Generation, Int. J. Bifurcation and Chaos, Chaos in Circuits and Systems, 22(1), 1250011, 2012.
- Sprott, J. C. A new class of chaotic circuit, Phys Lett A, 266, 19–23, 2000.
- Lu, J., Yu, X., Chen, G. Generating chaotic attractors with multiple merged basins of attraction: a switching piecewise-linear control approach, IEEE Trans. Circuits Syst. I, 50(2), 198–207, 2003.
- Campos-Cantón, E., Barajas-Ramírez, J. G., Solís Perales, G., Femat, R. Multiscroll attractors by switching systems, Chaos, 20, 110136, 2010.
- Chua, L.O., Wu, C. W., Huang, A., Zhong, G. Q. A universal circuit for studying and generating chaos, Part I+II, IEEE Trans. Circ. & Syst. I, 40(10), 732– 761, 1993.
- Chen, G., Dong, X. From Chaos to order: Methodologies, perspectives and applications, World Scientific, Singapore, 1998.
- Suykens, J. A. K., Vandewalle, J. Quasilinear approach to nonlinear systems and the design of n-double scroll (n = 1, 2, 3, 4, …), IEE Proceedings-G, 138, 595–603, 1991.
- Aziz-Alaoui, M. A. Differential equations with multispiral attractors, Int. J. Bifurcation and Chaos, 9(6), 1009– 1039, 1999.
- Cafagna, D., Grassi, G. Hyperchaotic coupled Chua circuits: An approach for generating new n × m-scroll attractors, Int. J. Bifurcation and Chaos, 13(9), 2537– 2550, 2003.
- Yalcin, M. E., Suykens, J. A. K., Vandewalle, J. Cellular Neural Networks, Multi-Scroll Chaos and Synchronization, World Scientific, Singapore, 2005.
- Lu, J., Chen, G., Generating multi-scroll chaotic attractors: theories, methods and applications, Int. J. Bifurcation and Chaos, 16(4), 775–858, 2006.
- Díaz-González, E. C., Aguirre-Hernández, B., López Rentería, J. A. Campos-Cantón, E. and LoredoVillalobos, C. A. Stability and Multiscroll Attractors of Control Systems via the Abscissa, Problems in Engineering, 6743734, 2017.
- Díaz-González, E. C., López-Rentería, J. A., Campos Cantón, E., and Aguirre-Hernández, B. Maximal Unstable Dissipative Interval to Preserve Multi-scroll Attractors via Multi-saturated Functions, J. Nonlinear Sci., 26: 1833–1850, 2016.
- Anzo-Hernández, A., Gilardi-Velázquez, H. E. and Campos-Cantón, E. On multistability behavior of unstable dissipative systems, Chaos 28, 033613, 2018.
- Elhadj, Z., Sprott, J. C. Generating 3-scroll attractors from one single Chua circuit, Int. J. Bifurcation and Chaos, 20(1), 133–144, 2010.
- Silva, C. Shilnikov’s theorem: A tutorial, IEEE Trans. Circ.& Syst I, 40(10), 675 –682, 1993.
- Tigan, G., Llibre, J. Heteroclinic, Homoclinic and Closed Orbits in the Chen System, Int. J. Bifurcation and Chaos, 26(4), 1650072, 2016