Illiani Carro Pérez | IPICYT |
Juan Gonzalo Barajas-Ramirez | IPICYT |
Resumen: Memristors are resistive memory devices, where the resistive memory state is a function of the memristor’s initial conditions and the history of the voltage across its terminals. Applications of these devices are in neuromorphic circuits. In particular, as representations of the open-close dynamics of the ionic channels in neurophysiological models. We use a memristive version of the Integrate and Fire neuron to construct a time-varying memristive neural network. In this model, a memory state is a stable unique equilibrium point. We show that the existence of a memory state depends uniformly on properties of the network topology and description of the memristive characteristic function. We illustrate our results using numerical simulations.
¿Cómo citar?
Illiani Carro Pérez & Juan Gonzalo Barajas-Ramirez. Stability of the Memory State of a Time-Varying Memristive Neural Network Model. Memorias del Congreso Nacional de Control Automático, pp. 1-5, 2020.
Palabras clave
Memristors, Neural network models, Neuron models, Resistive memory
Referencias
- Hodgkin, A. L., Huxley, A. F., Katz, B. “Ionic currents underlying activity in the giant axon of the squid,” Arch. Sci. Physiologiques, 3, 129–150, 1949.
- Lapique, L. “Recherches Quantitatives Sur l’excitation Electrique Des Nerfs Traitee Comme Une Polarization,” J. de Physiologie Path. Gen., 22(1), 620–635, 1907.
- Chua, L. O. “Memristor-The missing circuit element,” IEEE Trans. Circuits Theo., 18(5), 507–519, 1971.
- Chua, L. O. “Resistance switching memories are memristors,” Appl. Phys. A, 102(51), 102–783, 2011.
- Chua, L.O., Sbitnev, V., Kim, H. “Hodgkin–Huxley Axon Is Made Of Memristors,” Int. J. Bifur. Chaos, 22(3), 1230011 1–48, 2012.
- Sah, M., Kim, H., Eroglu, A., Chua, L.O., “Memristive Model of the Barnacle Giant,” Int. J. Bifur. Chaos, 26(1), 1630001 1–40, 2016.
- Di Marco, M., Forti, M., Pancioni, L. “New Conditions for Global Asymptotic Stability of Memristor Neural Networks,” IEEE Trans. Neur. Net. Lear. Syst., 28(5), 1822–1834, 2018.
- Yang, L., Zeng, Z., Shi, X., “A memristor-based neural network circuit with synchronous weight adjustment,” Neurocomputing, 363, 114–124, 2019.
- Chua, L. O., Kang, S. M. “Memristive Devices and Systems,” Proc. of the IEEE, 64(2), 209–223, 1976.
- Lü, J., Chen, G. “A time-varying complex dynamical network model and its controlled synchronization criteria,” IEEE Trans. on Automatic Control,50(6), 841– 846, 2005.