Juan Antonio Lopéz-Guevara | Tecnologico Nacional de Mexico |
Dunstano del Puerto-Flores | Universidad de Guadalajara |
Pavel Zuniga | Universidad de Guadalajara |
Emilio Barocio | Universidad de Guadalajara |
Resumen: This work presents the scaled-power emulator design of the doubly-feed induction generator (DFIG)-based variable speed WTS of 1.5 MW, which the power response is scaled to 1.5 kW. The design is composed by a WTS mathematical model, which software-simulated response is used for the configuration of a voltage source converter with LCL filter to act as power source simulating the operation of the WTS model. As a result, software simulation of the proposed scale-power emulator design in a grid-connected scenario is presented, which validated the design, a preliminary stage for a hardware implementation.
¿Cómo citar?
Juan Antonio Lopéz-Guevara, Dunstano del Puerto-Flores, Pavel Zuniga & Emilio Barocio. Power-Scale Emulator Design of a DFIG-Based Variable Speed Wind Turbine. Memorias del Congreso Nacional de Control Automático, pp. 1-6, 2020.
Palabras clave
Scale, Power, Emulator, Design, Wind, Turbines
Referencias
- IRENA,Wind Energy Data,[Accessed: June 15 2020], Available: http://www.irena.org/wind
- S.D. Ahmed, F.S.M. Al-Ismail, M. Shafiullah, F.A. AlSulaiman, and I.M. El-Amin, Grid Integration Challenges of Wind Energy: A Review, IEEE Access, vol. 8, pp. 10857-10878, 2020.
- R. Teodorescu, M. Liserre, and P. Rodriguez, Grid converters for photovoltaic and wind power system, Jhon Wiley & Sons, Ltd., 2011.
- S. Müller, M. Deicke, and R.W. De Doncker, Double fed induction generator systems for wind turbines, IEEE Industry Applications Magazine, May/June 2002.
- T. Ackermann, Wind power in power systems, John Wiley & Sons Ltd., England, 2005.
- B. Wu, Y. Lang, N. Zargari, and S. Kouro Power conversion and control of energy systems, Jhon Wiley & Sons, Ltd., England, 2011.
- D.X. Llano and R.A. McMahon, Control techniques with system efficiency comparison for micro-wind turbines, IEEE Trans. Sustain. Energy, vol. 8, no. 4, pp. 1609- 1617, Oct. 2017
- C.M. Ahmed, S.J. Plathottam, and H. Salehfar, Sub kW wind turbine emulator (WTE), IEEE Int. conf. on electro information technology, 2016.
- L.K. Gan, J.K.H. Shek, and M.A. Mueller, Modeling and characterization of downwind tower shadow effects using a wind turbine emulator, IEEE Trans. Ind. Electron., vol. 64, no. 9, 2017.
- S.K. Bagh, P. Samuel, R. Sharma, and S. Banerjee, Emulation of static and dynamic characteristics of a wind turbine using Matlab/Simulink, 2nd Int. Conf. on Power, Control and embedded Systems, 2012.
- H. Camblong, I.M. de Alegria, M. Rodriguez, and G. Abad, Experimental evaluation of wind turbines maximum power point tracking controllers, Energy Conversion Management, vol. 47, 2006.
- N.R. Averous, M. Stieneker, S. Kock, C. Andrei, A. Helmedag, R.W. De Doncker, K. Hameyer, G. Jacobs, and A. Monti, Development of a 4MW full-size wind turbine test bench, IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 2, 2017.
- N. Muntean, D. Petrila, and O. Pelan, Hardware in the loop wind turbine emulator, Int. AEGEAN conf. on electrical machines and power electronics and electromotion, 2011.
- Y. Jiao, H. Nian, and G. He, Control strategy based on virtual synchonous generator under unbalanced grid voltage, 2017 20th Int. Conf. on electrical machines and systems, pp. 1–6, 2017.
- H. P. Beck and R. Hesse, Virtual synchronous machine, 2007 9th Int. Conf. on electrical power quality and utilisation, pp. 1-6, 2007.
- F. Huerta, R.L. Tello, and M. Prodanovic, RealTime Power-Hardware-in-the-Loop Implementation of Variable-Speed Wind Turbines, IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 1893-1904, 2017.
- J.B. Ekanayake, L. Holdsworth, and N. Jenkins, Comparison of 5th order and 3rd order machine models for dubly fed induction generator (DFIG) wind turbines, Electric Power Systems Research, pp. 207–215, 2003.
- E. Rosas, V. Cárdenas, J. Alcalá, and C. Nuñez, Active and reactive current decoupled control strategy applied to a single-phase BTB converter, Int. conf. on electrical eng., computating science & automatic control, 2009.
- M. Liserre, F. Blaabjerg, and S. Hansen, Design and Control of an LCL-Filter-Based Three-Phase Active Rectifier, IEEE Trans. Ind. Appl., Vol. 41, pp. 1281- 1291, no. 5, 2005.