Mercado Uribe, Jose Angel | Universidad Nacional Autonoma De Mexico |
Moreno, Jaime A | Universidad Nacional Autonoma De Mexico |
Resumen: En este artículo, un diseño de controlador super-twisting multivariable para sistemas de dos salidas con matriz de desacoplamiento incierta es presentado. De igual forma que el super-twisting clásico para sistemas de una salida, este controlador puede rechazar perturbaciones Lipschitz, es decir, cuya derivada se encuentre acotada por una constante. La estabilidad del origen del sistema en lazo cerrado es probada utilizando una función estricta de Lyapunov. Asimismo, eL funcionamiento del controlador es mostrado a través de simulaciones.
¿Cómo citar?
Angel Mercado-Uribe & Jaime A. Moreno. Control Super Twisting para Sistemas de Dos Salidas. Memorias del Congreso Nacional de Control Automático, pp. 261-266, 2021.
Palabras clave
Homoheneous Control, Robust Control, Sliding Mode Control
Referencias
- Andrieu, V., L. Praly y A. Astolfi (2008). Homogeneous Aproximation, Recursive Observer Design and Output Feedback. SIAM J. Control Optim. 47(4), 1814–1850.
- Bacciotti, A. y L. Rosier (2005). Liapunov Functions and Stability in Control Theory. Springer-Verlag, 2nd ed. New York.
- Cruz-Zavala, E. y J. A. Moreno (2017). Homogeneous High Order Sliding Mode Design: a Lyapunov Approach. Automatica 80, 232–238.
- Kamal, Shyam, Asif Chalanga, Ramesh Kumar P. y B. Bandyopadhyay (2015). Multivariable continuous integral sliding mode control. In: 2015 International Workshop on Recent Advances in Sliding Modes (RASM). pp. 1–5.
- Levant, A. (1993). Sliding Order and Sliding Accuracy in Sliding Mode Control. International J. Control 58(6), 1247–1263.
- Levant, A. (2005). Homogeneity Approach to High-Order Sliding Mode. Automatica 41, 823–830.
- Levant, A. (2010). Gain-scheduled high-order mimo sliding mode control. In: 49th Conference on Decision and Control (CDC) (IEEE, Ed.). pp. 5150–5155.
- Levant, A. (2014). Finite-Time Stabilization of Uncertain MIMO Systems. In: 53rd Conference on Decision and Control (IEEE, Ed.). pp. 4753–4758.
- Levant, A. y Y. Dvir (2014). Accelerated High-Order MIMO Sliding Mode control. In: 13th International Workshop on Variable Structure Systems (VSS) (IEEE, Ed.). pp. 1–6.
- López-Caamal, Fernando y Jaime A. Moreno (2015). Qualitative differences of two classes of multivariable super-twisting algorithms. In: 2015 54th IEEE Conference on Decision and Control (CDC). pp. 5414–5419.
- López-Caamal, Fernando y Jaime A. Moreno (2019). Generalised multivariable supertwisting algorithm. International Journal of Robust and Nonlinear Control 29(3), 634–660.
- Moreno, J. A. (2016). Discontinuous integral control for mechanical systems. In: 2016 14th International Workshop on Variable Structure Systems (VSS). pp. 142– 147.
- Moreno, J.A. y M. Osorio (2008). A Lyapunov approach to second-order sliding mode controllers and observers. In: Proceedings of the IEEE Conference on Decision and Control (IEEE, Ed.). pp. 2856–2861.
- Moreno, J.A. y M. Osorio (2012). Strict Lyapunov functions for the Super-Twisting algorithm. IEEE Transactions on Automatic Control 57(4), 1035–1040. cited By 391.
- Nagesh, Indira y Christopher Edwards (2014). A multivariable super-twisting sliding mode approach. Automatica 50(3), 984–988.
- Seeber, Richard y Martin Horn (2018). Necessary and sufficient stability criterion for the super-twisting algorithm. In: 2018 15th International Workshop on Variable Structure Systems (VSS). pp. 120–125.
- Utkin, V. (1992). Sliding Modes in Control and Optimization. Spring Verlag.
- Vidal, Paulo V. N. M., Eduardo V. L. Nunes y Liu Hsu (2016). Multivariable super-twisting algorithm for a class of systems with uncertain input matrix. In: 2016 American Control Conference (ACC). pp. 7201–7206.
- Vidal, Paulo V. N. M., Eduardo V. L. Nunes y Liu Hsu (2017). Output-feedback multivariable global variable gain super-twisting algorithm. IEEE Transactions on Automatic Control 62(6), 2999–3005.