Ramos-García, Fernada | Universidad Nacional Autonoma De Mexico |
Espinosa-Perez, Gerardo | Universidad Nacional Autonoma De Mexico |
Avila-Becerril, Sofia | Universidad Nacional Autonoma De Mexico |
Resumen: In this work, the solution of the trajectory tracking control problem for a class of port Hamiltonian systems is presented. The considered class is characterized by the fact that the interconnection matrix exhibits a particular structure that corresponds to the condition that the internal interconnection of the components of the vector state is modulated by the state itself. An additional feature of the presented result is the possibility to deal with under-actuated system. Regarding the stability analysis, the structure of the approached class allows to formulate the control error dynamic in such a way that using well-known results from the perturbed systems theory it is possible to obtain asymptotic stability properties for the closed-loop system. The usefulness of the contribution is illustrated by solving the speed tracking control problem of the Permanent Magnet Synchronous Motor.
¿Cómo citar?
Fernanda Ramos-García, Gerardo Espinosa-Pérez & Sofía Avila-Becerril. On the Trajectory Tracking Control of Hamiltonian Systems. Memorias del Congreso Nacional de Control Automático, pp. 292-297, 2021.
Palabras clave
Nonlinear control, Passivity Based Control, Tracking control, Hamiltonian Systems
v
Referencias
- Castaños, F., Ortega, R., Van der Schaft, A., and Astolfi, A. (2009). Asymptotic stabilization via control by interconnection of port-hamiltonian systems. Automatica, 45(7), 1611–1618.
- Khalil, H.K. (2002). Nonlinear systems. Prentice hall Upper Saddle River, NJ.
- Nguyen, T.S., Hoang, N.H., Hussain, M.A., and Tan, C.K. (2019). Tracking-error control via the relaxing porthamiltonian formulation: Application to level control and batch polymerization reactor. Journal of Process Control, 80, 152–166.
- Ortega, R., Perez, J.A.L., Nicklasson, P.J., and SiraRamirez, H.J. (2013). Passivity-based control of EulerLagrange systems: mechanical, electrical and electromechanical applications. Springer Science & Business Media.
- Ortega, R. and Spong, M.W. (1989). Adaptive motion control of rigid robots: A tutorial. Automatica, 25(6), 877–888.
- Ortega, R. and Spong, M.W. (2000). Stabilization of underactuated mechanical systems via interconnection and damping assignment. IFAC Proceedings Volumes, 33(2), 69–74.
- Ortega, R., van der Schaft, A.J., and Maschke, B.M. (1999). Stabilization of port-controlled hamiltonian systems via energy balancing. In Stability and stabilization of nonlinear systems, 239–260. Springer.
- Reyes-Baeza, R., van der Schafta, A., and Jayawardhanaa, B. (2018). Virtual contraction based control of fully-actuated mechanical systems in the porthamiltonian framework.
- Shah, D., Espinosa-Pérez, G., Ortega, R., and Hilairet, M. (2014). An asymptotically stable sensorless speed controller for non-salient permanent magnet synchronous motors. International Journal of Robust and Nonlinear Control, 24(4), 644–668.
- Turnwald, A., Sch¨afer, M., and Liu, S. (2018). Passivitybased trajectory tracking control for an autonomous bicycle. In IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, 2607–2612. IEEE.
- Van Der Schaft, A. (1986). Stabilization of hamiltonian systems. Nonlinear Analysis: Theory, Methods, and Applications, 10(10), 1021–1035.
- Van Der Schaft, A. and Jeltsema, D. (2014). Porthamiltonian systems theory: An introductory overview. Foundations and Trends in Systems and Control, 1(2- 3), 173–378.
- Yaghmaei, A. and Yazdanpanah, M.J. (2017). Trajectory tracking for a class of contractive port hamiltonian systems. Automatica, 83, 331–336.