E. Zambrano-Serrano | Universidad Autónoma de Nuevo León |
C. Posadas-Castillo | Universidad Autónoma de Nuevo León |
M. A. Platas-Garza | Universidad Autónoma de Nuevo León |
J. Rodriguez-Maldonado | Universidad Autónoma de Nuevo León |
A. E. Loya-Cabrera | Universidad Autónoma de Nuevo León |
https://doi.org/10.58571/CNCA.AMCA.2022.086
Resumen: This paper presents a chaotic map’s fractionalization, dynamical analysis, control, and synchronization in a leader-follower configuration. The fractional-order version of the chaotic map is obtained based on the Caputo-like delta difference operator. Then, the dynamical behaviors associated with the fractional-order difference system are analyzed by employing the phase portraits, bifurcations diagrams, and Lyapunov exponent. Afterward, the control and synchronization are achieved by proposing a controller for the fractional-order map. Finally, the synchronization error based on the proposed control scheme is proven, and numerical simulations confirm that the control technique can quickly stabilize and synchronize the fractional-order chaotic maps.
¿Cómo citar?
E. Zambrano-Serrano, C. Posadas-Castillo, M. A. Platas-Garza, J. Rodriguez-Maldonado & A. E. Loya-Cabrera. On stabilization, synchronization and dynamical analysis of a fractional-order chaotic map. Memorias del Congreso Nacional de Control Automático, pp. 504-509, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.086
Palabras clave
Sistemas Caóticos; Control de Sistemas No Lineales; Sincronización de Sistemas
Referencias
- Abdeljawad, T. (2011). On Riemann and Caputo fractional differences. Computers & Mathematics with Applications, 62(3), 1602–1611.
- Atici, F. and Eloe, P. (2009). Initial value problems in discrete fractional calculus. Proceedings of the American Mathematical Society, 137(3), 981–989.
- Beltempo, A., Zingales, M., Bursi, O.S., and Deseri, L. (2018). A fractional-order model for aging materials: An application to concrete. International Journal of Solids and Structures, 138, 13–23.
- Cermak, J., Gyori, I., and Nechv´atal, L. (2015). On explicit stability conditions for a linear fractional difference system. Fractional Calculus and Applied Analysis, 18(3), 651.
- Danca, M.F. (2022). Fractional order logistic map: Numerical approach. Chaos, Solitons & Fractals, 157, 111851.
- Fernández -Carreón, B., Munoz-Pacheco, J., Zambrano-Serrano, E., and Félix- Beltrán, O. (2022). Analysis of a fractional-order glucose-insulin biological System with time delay. Chaos Theory and Applications, 4(1), 10–18.
- Fulai, C., Xiannan, L., and Yong, Z. (2011). Existence results for nonlinear fractional difference equation. J. Advances in Difference Equations, 2011(713201), 12 pages.
- García-Grimaldo, C. and Campos, E. (2021). Chaotic features of a class of discrete maps without fixed points. International Journal of Bifurcation and Chaos, 31(13), 2150200.
- Gilardi- Velázquez, H., Echenausía-Monroy, J., Jaimes-Reátegui, R., García -López, J., Campos, E., and Huerta-Cuellar, G. (2022). Deterministic coherence resonance analysis of coupled chaotic oscillators: fractional approach. Chaos, Solitons & Fractals, 157, 111919.
- Jahanshahi, H., Zambrano-Serrano, E., Bekiros, S., Wei, Z., Volos, C., Castillo, O., and Aly, A.A. (2022). On the dynamical investigation and synchronization of variable-order fractional neural networks: the hopfieldlike neural network model. The European Physical Journal Special Topics, 1–13.
- Jiang, H., Liu, Y., Wei, Z., and Zhang, L. (2016). A new class of three-dimensional maps with hidden chaotic dynamics. International Journal of Bifurcation and Chaos, 26(12), 1650206.
- Liu, X. and Ma, L. (2020). Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems. Applied Mathematics and Computation, 385, 125423.
- Munoz-Pacheco, J.M., Posadas-Castillo, C., and Zambrano-Serrano, E. (2020). The effect of a non-local fractional operator in an asymmetrical glucose-insulin regulatory system: analysis, synchronization and electronic implementation. Symmetry, 12(9), 1395.
- Ott, E., Grebogi, C., and Yorke, J.A. (1990). Controlling chaos. Physical review letters, 64(11), 1196.
- Platas-Garza, M., Zambrano-Serrano, E., Rodríguez-Cruz, J., and Posadas-Castillo, C. (2021). Implementation of an encrypted-compressed image Wireless transmission scheme based on chaotic fractional-order systems. Chinese Journal of Physics, 71, 22–37.
- Ucar, E., Ozdemir, N., and Altun, E. (2019). Fractional order model of immune cells influenced by cancer cells. Mathematical Modelling of Natural Phenomena, 14(3), 308.
- Wu, G.C. and Baleanu, D. (2015). Jacobian matrix algorithm for lyapunov exponents of the discrete fractional maps. Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 95–100.
- Zambrano-Serrano, E., Bekiros, S., Platas-Garza, M.A., Posadas-Castillo, C., Agarwal, P., Jahanshahi, H., and Aly, A.A. (2021a). On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control. Physica A: Statistical Mechanics and its Applications, 578, 126100.
- Zambrano-Serrano, E., Munoz-Pacheco, J.M., Serrano, F.E., Sánchez -Gaspariano, L.A., and Volos, C. (2021b). Experimental verification of the multi-scroll chaotic attractors synchronization in pwl arbitrary-order systems using direct coupling and passivity-based control. Integration, 81, 56–70.
- Zambrano-Serrano, E., Platas-Garza, M.A., Loya-Cabrera, A.E., Cedillo-Garza, G.E., and Posadas-Castillo, C. (2021c). Comportamiento de orden fraccionario en la respuesta de un circuito rc mediante derivada de núcleo singular. Ingenierías, 24(91), 22–32.