A. Martínez-Barbosa | TecNM/CENIDET |
J. H. Calleja-Gjumlich | TecNM/CENIDET |
G. V. Guerrero-Ramírez | TecNM/CENIDET |
E. Guerrero-Ramírez | Universidad Tecnológica de la Mixteca |
https://doi.org/10.58571/CNCA.AMCA.2022.053
Resumen: Particle Swarm Optimization (PSO) is an artificial intelligence technique applied to track the maximum power point of photovoltaic cells. It has been shown to be effective against irradiance and temperature variations, including partial shading condition. However, this technique suffers from unnecessary restarts as its threshold levels are adjusted. To overcome that situation, this document presents an improved PSO that focuses on the slow irradiance variations that trigger these thresholds. Comparative results between PSO, PSO combined with the Perturb and Observe (PSO-P&O) algorithm and the proposed PSO improvement technique are shown. As a result, the proposed improvement technique avoids unnecessary restarts of the original PSO without the steady-state oscillations around the maximum power point of the PSO-P&O.
¿Cómo citar?
Martínez-Barbosa, A., Calleja-Gjumlich, J., Guerrero-Ramírez, G. & Guerrero-Ramírez, E. A study on performance and fragility of controllers: PR and PD. Memorias del Congreso Nacional de Control Automático, pp. 445-450, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.053
Palabras clave
Sistemas Electrónicos de Potencia
Referencias
- Ahmad, R., Murtaza A. F., and Sher, H. A. (2019). Power tracking techniques for efficient operation of photovoltaic array in solar applications–A review. Renew. Sustain. Energy Rev., vol. (101), pp. 82-102.
- Babu, T. S., Rajasekar, N., and Sangeetha, K. (2015). Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition. Applied soft computing, vol. (34), pp. 613-624.
- Danandeh M. A., and Mousavi S. M. (2018). Comparative and comprehensive review of maximum power point tracking methods for PV cells. Renew. Sustain. Energy Rev., vol. (82), pp. 2743–2767.
- Dhimish, M. (2019). Assessing MPPT techniques on hot-spotted and partially shaded photovoltaic modules: Comprehensive review based on experimental data. IEEE Trans. Electron Devices, vol. (66), pp. 1132–1144.
- Dileep G., and Singh, S. N. (2017). An improved particle swarm optimization based maximum power point tracking algorithm for PV System operating under partial shading conditions. Sol. Energy, vol. (158), pp. 1006–1015.
- Eltamaly, A., Farh, H. M. H., and Al Saud, M. S. (2019). Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems. Sustainability, vol.(11), pp. 2091.
- Fébba, D. M., Rubinger, R. M., Oliveira, A. F., and Bortoni, E. C. (2018). Impacts of temperature and irradiance on polycrystalline silicon solar cells parameters. Sol. Energy, vol. (174), pp. 628–639.
- Hanzaei, S. H., Gorji, S. A., and Ektesabi, M. (2020). A Scheme-Based Review of MPPT Techniques With Respect to Input Variables Including Solar Irradiance and PV Arrays’ Temperature. IEEE Access, vol. (8), pp. 182229–182239.
- Hayder, W., Ogliari, E., Dolara, A., Abid, A., Hamed, M. B., and Sbita, L. (2020). Improved PSO: A Comparative Study in MPPT Algorithm for PV System Control under Partial Shading Conditions. Energies, vol. (13), pp. 2035.
- Ibrahim, A., Aboelsaud, R., and Obukhov, S. (2019). Improved particle swarm optimization for global maximum power point tracking of partially shaded PV array. Electr. Eng., vol. (101), pp. 443–455.
- Kannan, N., and Vakeesan, D. (2016). Solar energy for future world: – A review. Renew. Sustain. Energy Rev., vol. (62), pp. 1092-1105.
- Kennedy J., and Eberhart, R. (1995). Particle Swarm Optimization. In ICNN’95-Int. Conf. on Neural networks, pp. 1942–1948.
- Li, H., Yang, D., Su, W., and Lu, J. (2019). An Overall Distribution Particle Swarm Optimization MPPT Algorithm for Photovoltaic System Under Partial Shading. IEEE Tran. Ind. Electron., vol. (66), pp. 265-275.
- Martínez, D. D., Codorniu, R. T., Giral, R., and Seisdedos, L. V. (2021). Evaluation of particle swarm optimization techniques applied to maximum power point tracking in photovoltaic systems. Int. J. Circuit Theory Appl., vol. (49), pp. 1849–1867.
- Motahhir, S., El Hammoumi, A., and El Ghzizal, A. (2020). The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm. J. Clean. Prod., vol. (246), pp. 118983.
- Obukhov, S., Ibrahim, A., Zaki Diab, A. A., Al-Sumaiti, A. S., and Aboelsaud, R. (2020). Optimal Performance of Dynamic Particle Swarm Optimization Based Maximum Power Trackers for Stand-Alone PV System under Partial Shading Conditions. IEEE Access, vol. (8), pp. 20770–20785.
- Ram, J. P., and Rajasekar N. (2017). A new robust, mutated and fast tracking LPSO method for solar PV maximum power point tracking under partial shaded conditions. Applied Energy, vol. (201), pp. 45-59.
- Ruschel, C.S., Gasparin, P., and Krenzinger, A. (2021). Experimental análisis of the single diode model parameters dependence on irradiance and temperature. Sol. Energy, vol. (217), pp. 134–144.
- Shi, Y., and Eberhart, R. (1998). A Modified Particle Swarm Optimizer. In IEEE Int. Conf. on Evolutionary Computation Proc., pp. 69–73.
- Sundareswaran, K., Kumar, V. V., and Palani, S. (2015). Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions. Ren. Energy, vol. (75), pp. 308-317.