Ocaña Anaya, Guillermo | Universidad Nacional Autónoma de México |
Fridman, Leonid M. | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2023.015
Resumen: This paper presents a performance analysis for the reaction wheel pendulum (RWP) using continuous sliding mode controllers in the proportional integral derivative (PID-like) form. The fourth-order linearized model of the RWP is used for control design to obtain the simulations and the experimental results to verify the theoretical properties of this type of algorithm.

Implementation of Continuous HOSM Controllers in Reaction Wheel Pendulum
Size: 711 KB
Total descargados hasta ahora
73 Downloads
¿Cómo citar?
Ocaña Anaya, Guillermo; Fridman, Leonid M. Implementation of Continuous HOSM Controllers in Reaction Wheel Pendulum. Memorias del Congreso Nacional de Control Automático, pp. 97-102, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.015
Palabras clave
Control Discontinuo (modos deslizantes); Control de Sistemas No Lineales; Control Robusto
Referencias
- Castillo, I., Jim´enez-Liz´arraga, M., and Ibarra, E. (2015). Higher order sliding modes manifold design via singular lq control. Journal of the Franklin Institute, 352(7), 2810-2830.
- Cruz-Zavala, E. and Moreno, J.A. (2020). Higher order sliding mode control using discontinuous integral action. IEEE Transactions on Automatic Control, 65, 4316-4323.
- Fridman, L., Moreno, J., Bandyopadhyay, B., Kamal, S., and Chalanga, A. (2015). Continuous Nested Algorithms : The Fifth Generation of Sliding Mode Controllers, volume 24.
- Gutierrez-Oribio, D., Mercado Uribe, J., Moreno, J., and Fridman, L. (2021). Reaction wheel pendulum control using fourth-order discontinuous integral algorithm. International Journal of Robust and Nonlinear Control, 31, 185-206.
- Levant, A. (2003a). Quasi-continuous high-order slidingmode controllers. In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), volume 5, 4605-4610 Vol.5.
- Levant, A. (2003b). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control – INT J CONTR, 76, 924-941.
- Mercado-Uribe, J.A. and Moreno, J.A. (2020). Discontinuous integral action for arbitrary relative degree in sliding-mode control. Automatica, 118, 109018.
- Perez Ventura, U., Mendoza-Avila, J., and Fridman, L. (2021). Design of a proportional integral derivativelike continuous sliding mode controller. International Journal of Robust and Nonlinear Control, 31.
- Utkin, V. (1992). Sliding Modes in Control and Optimization. Communications and Control Engineering. Springer Berlin Heidelberg.