Galindo Orozco, René | Universidad Autónoma de Nuevo León |
Gomez Ocon, Adrian Isaac | Universidad Autónoma de Nuevo León |
https://doi.org/10.58571/CNCA.AMCA.2024.047
Resumen: A small 600 W aerogenerator operating in isolated mode is considered, under bounded wind and load changes. A model of its wind turbine is proposed, and a control system is designed that operates under low and medium winds. The control system consists of a proportional derivative controller with current compensation, designed for the non-linear averaging model of the boost converter of the aerogenerator, that guarantees stability in the Lyapunov sense and ensures that the current supplied to the load follows a specified current reference. The current reference is generated by a gradient descent maximum power point tracking algorithm.
¿Cómo citar?
Galindo, R. & Gomez, A.I. (2024). Modelling and control of a 600 W aerogenerator. Memorias del Congreso Nacional de Control Automático 2024, pp. 274-279. https://doi.org/10.58571/CNCA.AMCA.2024.047
Palabras clave
Modelling, Control System, Small aerogenerators, Stability, Current regulation, Maximum Power Point Tracking
Referencias
- A. Ahmad. (2021). Increase in frequency of nuclear power outages due to changing climate. Nature Energy, 6, 755-762.
- T. Ackermann. (2005). Wind Power in Power Systems, John Wiley Sons, London, UK.
G. Idárraga y A. Romero. (2023). Integración y Análisis de pequeñas turbinas eólicas en entornos urbanos, Red CYTED. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, http://eprints.uanl.mx/id/eprint/26726 - V.L. Okulov y G.A.M. van Kuik. (2009). The Betz-Joukowsky limit for the maximum power coefficient of wind turbines. Int. Scientific J. for Alternative Energy and Ecology, (9), 106-111. http://isjaee.hydrogen.ru/?pid=1845.
- S. De Zutter, et al. (2017). Modeling of active yaw systems for small and medium wind turbines. Int. Universities Power Engineering Conference.
A.E. Orozco. (2020). Control basado en pasividad de un aerogenerador de velocidad variable modelado en gráficas de ligadura. tesis de maestría, FIME, UANL. - T. Bakka y H. Reza. (2011). Wind turbine modeling using the bond graph. IEEE Int. Symposium on Computer-Aided Control System Design, 1208-1213.
- G. Gonzalez y V. Lopez. (2017). Modelling and Simulation of a Skystream Wind Turbine in a Bond Graph Approach. IASTED Int. Conf. Modelling, Identification and Control, 55-62.
- R. Galindo, Y. Martínez y N. Villa. (2021). Bond Graph Methodology Based on the Position of the Centers of Mass Applied to Small Wind Turbines. Congreso Nacional de Control Automático.
- J.F. Gieras y M. Wing. (2002). Permanent magnet motor technology, Dekker, New York.
- I.A. Muñoz. (2022). Modelado y validación de las dinámicas del movimiento alrededor del eje vertical de un aerogenerador. tesis de licenciatura, FIME, UANL.
- H. Sira y R. Silva. (2006). Modelling of DC-to-DC Power Converters, capítulo en Power Systems, 11-58, Springer, London.
- D. Ajesam, B. Damien y E. Nyuysever. (2022). Maximum Power Point Tracking Using the Incremental Conductance Algorithm for PV Systems Operating in Rapidly Changing Environmental Conditions. Smart grid and renewable energy, 13(05), 89-108, doi: 10.4236/sgre.2022.135006
- R. Galindo y N. Villa. (2019). GMPP Tracking based on Model Reference LPV Control for a PV System with Buck Converter Modelled on BG. Asian J. of Control, Wiley, 21, 1918-1926, doi: 10.1002/asjc.2132
- P. Bhatnagar y R.K. Nema. (2013). Maximum power point tracking control techniques: State-ofthe-art in photovoltaic applications. Renewable and Sustainable Energy Reviews, 23, 224-241, doi: https://doi.org/10.1016/ j.rser.2013.02.011
- S. Sabzevari, et al. (2017). MPPT control of wind turbines by direct adaptive fuzzy-PI controller and using ANNPSO wind speed estimator. J. of Renewable and Sustainable Energy, 9.