Zimmermann Soto, Laura | Universidad Popular Autónoma del Estado de Puebla |
Contreras Carmona, Itzel | Universidad Autónoma del Estado de México |
Saldívar, Martha Belem | CINVESTAV |
Portillo Rodríguez, Otniel | Universidad Autónoma del Estado de México |
https://doi.org/10.58571/CNCA.AMCA.2024.036
Resumen: The use of renewable energy has experienced significant growth as part of efforts to reduce fossil fuel consumption. Mexico, due to its geographical location, holds significant potential for solar energy development. However, this valuable resource remains underutilized, largely due to the low efficiency of photovoltaic panels. To meet user demand for power, implementing a power converter and control algorithms is essential. This article focuses on the implications of not having a voltage converter and analyzes the performance of various controllers applied to the Maximum Power Point tracking problem. Specifically, it examines Proportional Integral Derivative control, first-order sliding mode control, and Super Twisting sliding mode control under abrupt and smooth changes in temperature and irradiance. The objective is to determine the most efficient and reliable control strategy for solving the stated problem.
¿Cómo citar?
Zimmermann Soto, L., Contreras Carmona, I., Saldivar, B. & Portillo Rodríguez, O. (2024). Maximum Power Point Tracking Control for a Photovoltaic System. Memorias del Congreso Nacional de Control Automático 2024, pp. 208-213. https://doi.org/10.58571/CNCA.AMCA.2024.036
Palabras clave
Photovoltaic system, Maximum Power Point Tracking, PID Control, Sliding Mode Control
Referencias
- Becerra-Pérez, L., González-Díaz, R., and Villegas-Gutiérrez, A. (2021). La energía solar fotovoltaica, análisis costo beneficio de los proyectos en México. Revista Internacional del Desarrollo Regional Sustentable, 5(2), 600–623.
- Bendib, B., Belmili, H., and F., K. (2015). A survey of the most used mppt methods: Conventional and advanced algorithms applied for photovoltaic systems. Renewable and Sustainable Energy Reviews, 45, 637––648.
- Boufassa, A., Rahmani, L., and Mekhilef, S. (2015). Design and real time implementation of single phase boost power factor correction converter. ISA Transactions, 55, 267–274.
- Contreras, I., Saldivar, B., Portillo, O., Ramírez, V., and Gil, L. (2023). Super twisting sliding mode control for the maximun power point tracking in a photovoltaic system under partial shading. In Congreso Nacional de Control Automático 2023. Acapulco, Guerrero, México.
- Contreras-Carmona, I. (2023). Diseño de control para el seguimiento del punto de máxima potencia en un sistema fotovoltaico en condiciones de sombra no uniforme. Master’s thesis, Universidad Autónoma del Estado de México, Facultad de Ingeniería, Mexico.
- Eltamaly, A.M. and Abdelaziz, A.Y. (2020). Modern maximum power point tracking techniques for photovoltaic energy systems. Springer Nature Switzerland AG.
- Gil, L. (2019). Control de Convertidores para aplicaciones fotovoltaicas. Ph.D. thesis, Universidad Autónoma del Estado de México. Facultad de Ingeniería, Mexico.
- Kchaou, A., Naamane, A., Koubaa., Y., and M’sirdi, N. (2017). Second order sliding mode-based mppt control for photovoltaic applications. Solar Energy, 155, 758– 769.
- Rekioua, D. and Matagne, E. (2012). Optimization of photovoltaic power systems: modelization, simulation and control. Springer, London, U.K.
- Shtessel, Y., Edwards, C., Fridman, L., and Levant, A. (2014). Sliding mode control and observation. Birkhäuser, New York, USA.
- Sira-Ramírez, H. (2015). Sliding mode control: The delta-sigma modulation approach. Birkhäuser, Basel, Switzerland.