Ríos, Héctor | Tecnológico Nacional de México La Laguna |
Efimov, Denis | Université de Lille |
Ushirobira, Rosane | Université de Lille |
https://doi.org/10.58571/CNCA.AMCA.2024.075
Resumen: In this paper, a parameter identification algorithm is proposed for linear regression systems with constant unknown parameters. Such an algorithm is composed of an accelerated version of the heavy–ball method and a modified extension of Kreisselmeier’s filters and can identify constant parameters in a finite time under a persistent excitation condition. The workability of the proposed algorithm is depicted by simulation results.
¿Cómo citar?
Ríos, H., Efimov, D. & Ushirobira, R. (2024). An Accelerated Parameter Identification Algorithm for Linear Regression Systems. Memorias del Congreso Nacional de Control Automático 2024, pp. 439-444. https://doi.org/10.58571/CNCA.AMCA.2024.075
Palabras clave
Parameter Identification, Heavy–Ball Method, Finite–Time
Referencias
- Aleksandrov, A., Efimov, D., and Dashkovskiy, S. (2023). Design of finite-/fixed-time ISS-Lyapunov functions for mechanical systems. Mathematics of Control, Signals, and Systems, 35, 215-235.
- Aleksandrov, A. (2020). Some stability conditions for nonlinear systems with time-varying parameters. In IFAC Proceedings Volumes, volume 33, 7-10.
- Annaswammy, A. and Fradkov, A. (2021). A historical perspective of adaptive control and learning. Annual Reviews in Control, 52, 18-41.
- Aranovskiy, S., Ushirobira, R., Korotina, M., and Vedyakov, A. (2023). On preserving-excitation properties of kreisselmeier’s regressor extension scheme. IEEE Transactions on Automatic Control, 68(2), 1296-1302.
- Ballesteros, M., Polyakov, A., Efimov, D., Chairez, I., and Poznyak, A. (2021). Non-parametric identification of homogeneous dynamical systems. Automatica, 129, 109600.
- Efimov, D. and Aleksandrov, A. (2021). Analysis of robustness of homogeneous systems with time delays using Lyapunov-Krasovskii functionals. International Journal of Robust and Nonlinear Control, 31, 3730-3746.
- Gao, J., Liu, X., Dai, Y.H., Huang, Y., and Yang, P. (2023). A family of distributed momentum methods over directed graphs with linear convergence. IEEE Transactions on Automatic Control, 68(2), 1085-1092.
- Hustig-Schultz, D. and Sanfelice, R. (2024). Uniting Nesterov and heavy ball methods for uniform global asymptotic stability of the set of minimizers. Automatica, 160, 111389.
- Ioannou, P. and Sun, J. (1996). Robust Adaptive Control. Prentice Hall, Inc., New Jersey, USA.
Isermann, R. and Münchhof, M. (2011). Identification of Dynamic Systems, An Introduction with Applications. Springer-Verlag, Berlin, 1st edition. - Jin, H., Liu, Z., Zang, H., Liu, Y., and Zhao, J. (2018). A dynamic parameter identification method for flexible joints based on adaptive control. IEEE Transactions on Mechatronics, 23, 2896-2908.
- Kapetina, M., Repaic, M., Pisano, A., and Jelicic, Z. (2019). Adaptive parameter estimation in LTI systems. IEEE Transactions on Automatic Control, 64, 4188-4195.
- Na, J., Yuang, J., Wu, X., and Guo, Y. (2015). Robust adaptive parameter estimation of sinusoidal signals. Automatica, 53, 376-384.
- Narendra, K. and Annaswamy, A. (2005). Stable Adaptive Systems. Dover Publications, Mineola, NY.
- Orlov, Y. (2004). Finite-time stability and robust control synthesis of uncertain switched systems. SIAM Journal on Control and Optimization, 43(4), 1253-1271.
- Polyak, B. (1964). Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 4(5), 1-17.
- Ren, X., Li, D., Xi, Y., and Shao, H. (2022). An accelerated distributed gradient method with local memory. Automatica, 146, 110260.
- Ugrinovskii, V., Petersen, I., and Shames, I. (2022). Global convergence and asymptotic optimality of the heavy ball method for a class of nonconvex optimization problems. IEEE Control Systems Letters, 6, 2449-2454.
- Vaquero, M., Mestres, P., and Cortés, J. (2023). Resource-aware discretization of accelerated optimization flows: The heavy ball dynamics case. IEEE Transactions on Automatic Control, 68(4), 2109-2124.
- Wang, J., Efimov, D., and Bobtsov, A. (2019). On robust parameter estimation in finite-time without persistence of excitation. IEEE Transactions on Automatic Control, 65, 1731-1738.
- Xin, R. and Khan, U. (2020). Distributed heavy-ball: A generalization and acceleration of first-order methods with gradient tracking. IEEE Transactions on Automatic Control, 65(6), 2627-2633.
- Xiong, H., Chi, Y., Hu, B., and Zhang, W. (2020). Analytical convergence regions of accelerated gradient descent in nonconvex optimization under regularity condition. Automatica, 113, 108715.
- Yang, C., Jiang, Y., He, W., Na, J., Li, Z., and Xu, B. (2018). Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Transactions on Industrial Electronics, 65, 8112-8123.
- Zimenko, K., Polyakov, A., and Efimov, D. (2018). On finite-time robust stabilization via nonlinear state feedback. International Journal of Robust and Nonlinear Control, 28(16), 4951-4965.