Sixto-Santamaria, Estefany | Escuela Superior de Ingeniería Mecánica y Eléctrica |
Barragán Bonilla, Luis Alberto | Escuela Superior de Ingeniería Mecánica y Eléctrica |
Marquez-Rubio, J. Francisco | Escuela Superior de Ingeniería Mecánica y Eléctrica |
Del Muro Cuéllar, Basilio | Escuela Superior de Ingeniería Mecánica y Eléctrica |
Hernández Pérez, Miguel Angel | Universidad Veracruzana |
https://doi.org/10.58571/CNCA.AMCA.2024.062
Resumen: The stability analysis of linear systems with time delay is difficult because the delay term appears in the characteristic equation when closing the loop inducing an infinite order system. In this work a strategy based on a multi-predictor for linear delayed systems with two unstable poles is proposed. This strategy allows to estimate the system signal before been delayed in order to use it in the control stage. The great advantage of the multi-predictor is that it can be used for this type of systems with any delay size. Also, the necessary and sufficient stability conditions for the multi-predictor scheme are obtained and the minimum number of sub-predictors necessary to have an adequate estimation of the signal is determined. Finally, to show the effectiveness of the proposed strategy, a simulation example is presented.
![Control of delayed systems with two unstable poles using a multi-predictor based strategy](/wp-content/uploads/2022/04/logotipo_amca100.png)
¿Cómo citar?
Sixto Santamaria, E., Barragan Bonilla, L.A., Marquez Rubio, J.F., Del Muro Cuéllar, B. & Hernández Pérez, M.A. (2024). Control of delayed systems with two unstable poles using a multi-predictor based strategy. Memorias del Congreso Nacional de Control Automático 2024, pp. 362-367. https://doi.org/10.58571/CNCA.AMCA.2024.062
Palabras clave
linear systems, unstable systems, time delay, observer, PID controller
Referencias
- Barragan-Bonilla, L.A., Márquez-Rubio, J.F., del Muro Cuellar, B., Vázquez-Guerra, R.J., and Martínez, C. (2022). Observer-based control for high order delayed systems with an unstable pole and a pole at the origin. Asian Journal of Control, 25, 1759 – 1774.
- Camacho, O., Matinez, J.M., Patiño, K., Ulloa, F., Aro, K., and Mejía, C. (2019). Comparación de diferentes estrategias de control para sistemas con retardo a comparison of different control strategies for systems with delay.
- Fragoso-Rubio, V., Velasco-Villa, M., Hernández-Pérez, M.A., del Muro-Cuéllar, B., and Márquez-Rubio, J.F. (2019). Prediction-observer scheme for linear systems with input-output time-delay. International Journal of Control, Automation and Systems, 1–14.
- Hernández-Pérez, M.A., Fragoso-Rubio, V., Velasco Villa, M., del Muro-Cuéllar, B., Márquez-Rubio, J.F., and Puebla, H. (2020). Prediction-based control for a class of unstable time-delayed processes by using a modified sequential predictor. Journal of Process Control, 92, 98–107.
- Karan, S. and Dey, C. (2019). Set point weighted modified smith predictor for delay dominated integrating processes. In 2019 Devices for Integrated Circuit (DevIC), 172–176.
- Najafi, M., Hosseinnia, S., Sheikholeslam, F., and Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86, 599 – 609.
- Novella-Rodríguez, D.F., Del-Muro-Cuéllar, B., Márquez Rubio, J.F., Perez, M.A.H., and Velasco-Villa, M. (2019). Pd–pid controller for delayed systems with two unstable poles: a frequency domain approach. International Journal of Control, 92, 1196 – 1208.
- Rosas, C.D.V., Rubio, J.F.M., del Muro Cuéllar, B., Rodríguez, D.F.N., Sename, O., and Dugard, L. (2019). Stabilizing high-order delayed systems with minimumphase zeros using simple controllers. Studies in Informatics and Control, 28, 381–390.
- Smith, O. (1957). Closer control of loops with dead time.
- Sun, L., Ma, D., and Chen, C. (2021). Necessary and sufficient conditions on stabilization of unstable second order delay systems under pd control. In 2021 33rd Chinese Control and Decision Conference (CCDC), 5548–5553.
- Zhang, Z., Zhou, B., and Michiels, W. (2019). Pseudo predictor feedback stabilization of linear systems with both state and input delays. In 2019 IEEE 58th Conference on Decision and Control (CDC), 49–53.