Paredes, Angel Ignacio | Universidad de Guadalajara |
Nuño, Emmanuel | Universidad de Guadalajara |
Loria, Antonio | Centre National de la Recherche Scientifique |
https://doi.org/10.58571/CNCA.AMCA.2024.059
Resumen: This paper proposes a solution to the consensus formation control problem for agents with nonholonomic constraints and network communications subject to time-varying delays. The proposed controller addresses the consensus paradigm using a bounded input design without requiring velocity measurements. Network communications between the agents occur over an undirected graph topology. In order to deal with the nonholonomic constraints we design the controller to be time-varying using a persistence of excitation term. A comparative simulation analysis, with an unbounded control scheme, is provided.
¿Cómo citar?
Paredes, A.I., Nuño, E. & Loria, A. (2024). Consensus Control of Nonholonomic Vehicles with Input Constraints and Time-Varying Delays. Memorias del Congreso Nacional de Control Automático 2024, pp. 344-349. https://doi.org/10.58571/CNCA.AMCA.2024.059
Palabras clave
Multi-agent systems, formation control, consensus control, nonholonomic systems, time-varying delays
Referencias
- Ajorlou, A., Asadi, M., Aghdam, M., and Blouin, S. (2015). Distributed consensus control of unicycle agents in the presence of external disturbances. Systems & Control Letters, 82, 86–90.
- Cao, Y. and Ren, W. (2011). Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. Springer-Verlag.
- Cheng, Y., Jia, R., Du, H., Wen, G., and Zhu, W. (2018). Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback. Int. J. Robust Nonlinear Control, 28(6), 2082–2096.
- Dimarogonas, D. and Kyriakopoulos, K. (2007). On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control, 52(5), 916–922.
- Hatanaka, T., Chopra, N., Fujita, M., and Spong, M. (2015). Passivity-Based Control and Estimation in Networked Robotics. Communications and Control Engineering. Springer.
- Liang, X., Wang, H., Liu, Y., Chen, W., and Liu, T. (2018). Formation control of nonholonomic mobile robots without position and velocity measurements. IEEE Trans. on Robotics, 34(2), 434–446.Lin, Z., Francis, B.
- , and Maggiore, M. (2005). Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control, 50(1), 121–127.
- Loría, A., Kelly, R., Ortega;, R., and Santibanez, V. (1997). On global output feedback regulation of eulerlagrange systems with bounded inputs. IEEE Transactions on Automatic Control, 42(8), 1138–1143.
- Loría, A., Nuño, E., and Panteley, E. (2022). Observerless output-feedback consensus-based formation control of 2nd-order nonholonomic systems. IEEE Trans. Autom. Control, 67(12), 6934–6939.
- Loría, A., Panteley, E., Popović, D., and Teel, A. (2005). A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems. IEEE Trans. on Automat. Contr., 50(2), 183– 198.
- Nuño, E., Loría, A., and Panteley, E. (2022). Leaderless consensus formation control of cooperative multi-agent vehicles without velocity measurements. IEEE Control Systems Letters, 6, 902–907.
- Nuño, E., Sarras, I., anbd M. Maghenem, A.L., CruzZavala, E., and Panteley, E. (2020). Strict lyapunovkrasovskiĭ functionals for undirected networks of EulerLagrange systems with time-varying delays. Systems and Control Letters, 135, 104579.
- Paredes-Lopez, A.I., Nuño, E., Cruz-Zavala, E., and Aldana, C.I. (2022). Output-feedback consensus of delayed networks of euler-lagrange agents with bounded controllers. IEEE L-CSS, 6, 1903–1908.
- Peng, Z., Wen, G., Rahmani, A., and Yu, Y. (2015). Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory. International Journal of Systems Science, 46(8), 1447–1457.
- Romero, J., Nuño, E., Restrepo, E., and Sarras, I. (2024). Global consensus-based formation control of nonholonomic mobile robots with time-varying delays and without velocity measurements. IEEE Transactions on Automatic Control, 69(1), 355–362.
- Wang, H. (2014). Consensus of networked mechanical systems with communication delays: A unified framework. IEEE Transactions on Automatic Control, 59(6), 1571–1576.
- Zavala-Río, A., Aguiñaga-Ruiz, E., and Santibáñez, V. (2011). Global trajectory tracking through output feedback for robot manipulators with bounded inputs. Asian Journal of Control, 13(3), 430–438