Pablo-Sotelo, Abraham de Jesus | Instituto Politécnico Nacional |
Lozada-Castillo, Norma Beatriz | Instituto Politécnico Nacional |
Luviano-Juárez, Alberto | Instituto Politécnico Nacional |
Hernández-Gómez, J. J. | Instituto Politécnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2024.017
Resumen: Attitude determination and control systems in nano-satellites require reliable verification systems capable of reproducing the conditions that the system may encounter in space, such as weightlessness, electromagnetic disturbances, etc. In this regard, testing benches commonly use air suspension systems, which require precise initial positioning. For this purpose, mass balance models are employed, allowing the system to reproduce or be controlled under precise and controlled disturbances, closely aligning with the design guidelines set by international space agencies.
¿Cómo citar?
Pablo Sotelo, A.J., Lozada Castillo, N.B., Luviano Juárez, A. & Hernández Gómez, J. J. (2024). Euler-Lagrange model for balance system of a Testing Bench for Satellite Attitude Determination and Control Systems for 1U CubeSat. Memorias del Congreso Nacional de Control Automático 2024, pp. 97-101. https://doi.org/10.58571/CNCA.AMCA.2024.017
Palabras clave
Modeling, Hardware-in-the-loop simulation, Mechatronic systems, Supervision and testing, Space systems, Attitude Determination and Control Systems
Referencias
- El wafi, I., Haloua, M., Guennoun, Z., and Moudden, Z. (2024). A framework for developing an attitude determination and control system simulator for cubesats: Processor-in-loop testing approach. Results in Engineering, 22. doi:10.1016/j.rineng.2024.102201. Cited by: 0; All Open Access, Gold Open Access.
- Farissi, M.S., Carletta, S., and Nascetti, A. (2019). Design and hardware-in-the-loop test of an active magnetic detumbling and pointing control based only on threeaxis magnetometer data. volume 2019-October. Cited by: 2.
- Gaber, K., ElMashade, M., and Aziz, G.A.A. (2020). Hardware-in-the-loop real-time validation of microsatellite attitude control. Comput. Electr. Eng., 85, 106679. doi:10.1016/j.compeleceng.2020.106679.
- Kwan, T., Lee, K.M.B., Yan, J., and Wu, X. (2015). An air bearing table for satellite attitude control simulation. 1420–1425. doi:10.1109/ICIEA.2015.7334330.
- Markley, F.L. and Crassidis, J.L. (2014). Fundamentals of Spacecraft Attitude Determination and Control. Springer, New York, Heidelberg, Dordrecht, London. doi:10.1007/978-1-4939-0802-8.
- Modenini, D., Bahu, A., Curzi, G., and Togni, A. (2020). A dynamic testbed for nanosatellites attitude verification. Aerospace, 7(3). doi:10.3390/aerospace7030031. Cited by: 22; All Open Access, Gold Open Access.
- NASA (2018). State of the Art Small Spacecraft Technology. National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California. NASA/TP–2018-220027.
- Paluszek, M. (2023). ADCS – Spacecraft Attitude Determination and Control. Elsevier. doi:https://doi.org/10.1016/B978-0-32-399915-1.00038-3.
- Panyalert, T., Manuthasna, S., Chaisakulsurin, J., Masri, T., Palee, K., Prasit, P., Torteeka, P., Poonpakdee, P., and Konghuayrob, P. (2023). Experimental verification of control strategies for satellite magnetic-based attitude control system under a three-axis helmholtz cage environment. 771 – 776. doi:10.1109/TENCON58879. 2023.10322440. Cited by: 0.
- Prinkey, M.K., Miller, D.W., Bauer, P., Cahoy, K., Wise, E.D., Pong, C.M., Kingsbury, R.W., Marinan, A.D., Lee, H.W., and Main, E.L. (2013). Cubesat attitude control testbed design: Merritt 4-coil per axis helmholtz cage and spherical air bearing. Cited by: 9.
- Shim, H., Kim, O.J., Park, M., Choi, M., and Kee, C. (2023). Development of hardware-in-the-loop simulation for cubesat platform: Focusing on magnetometer and magnetorquer. IEEE Access, 11, 73164 – 73179. doi:10.1109/ACCESS.2023.3294565. Cited by: 0; All Open Access, Gold Open Access.
- Zhao, Z., Sun, L., Qiao, Y., Duan, S., Zhang, T., and Amir (2023). Design and development of an adcs teaching platform for educational small satellite. volume 2023- October. Cited by: 0.