Mera, Manuel | Instituto Politécnico Nacional |
Ríos, Héctor | Tecnológico Nacional de México, La Laguna |
Efimov, Denis | Université de Lille |
https://doi.org/10.58571/CNCA.AMCA.2024.001
Resumen: This paper presents a novel controller for the evader in the pursuit–evasion game, when each player is modeled as a single integrator. The resulting control design does not require any information on the pursuer control, only requires information on the pursuer state. The resulting control ensures the escape of the evader from the pursuer under an adequate selection and design of the evader controller parameters. Additionally, the synthesis of this controller is constructive and can be tuned straightforwardly since it is obtained from the solution of an LMI. The stability analysis of the tracking error dynamics is carried out considering a Lyapunov–like function and the effectiveness of the proposed result is illustrated through some simulations.
¿Cómo citar?
Mera, M., Ríos, H. & Efimov, D. (2024). A Controller Design for Evaders Considering Single Integrator Dynamics. Memorias del Congreso Nacional de Control Automático 2024, pp. 1-6. https://doi.org/10.58571/CNCA.AMCA.2024.001
Palabras clave
Pursuit–Evasion Problem, Nonlinear Control, Lyapunov methods
Referencias
- Chaudhari, A. y Chakraborty, D. (2022). A time–optimal feedback control for a particular case of the game of two cars. IEEE Transactions on Automatic Control, 67(4), 1806–1821.
- Chen, M., Zhou, Z., y Tomlin, C.J. (2017). Multiplayer reach–avoid games via pairwise outcomes. IEEE Transactions on Automatic Control, 62(3), 1451–1457.
- Evans, L.C. y Souganidis, P.E. (1984). Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations. Indiana University Mathematics Journal, 33(5), 773–797.
- Filippov, A.F. (1988). Differential Equations with Discontinuous Right-Hand Sides. Kluwer.
Fuchs, Z.E. y Khargonekar, P.P. (2017). Generalized engage or retreat differential game with escort regions. IEEE Transactions on Automatic Control, 62(2), 668–681. - Garcia, E., Casbeer, D.W., Moll, A.V., y Pachter, M. (2021). Multiple pursuer multiple evader differential games. IEEE Transactions on Automatic Control, 66(5), 2345–2350.
- Isaacs, R. (1965). Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. Dover Publications, New York, USA.
Kothari, M., Manathara, J.G., y Postlethwaite, I. (2017). Cooperative multiple pursuers against a single evader. Journal of Intelligent & Robotic Systems, 86(3-4), 551– 567. - Lopez, V.G., Lewis, F.L., Wan, Y., Sanchez, E.N., y Fan, L. (2020). Solutions for multiagent pursuit–evasion ga mes on communication graphs: Finite–time capture and asymptotic behaviors. IEEE Transactions on Automatic Control, 65(5), 1911–1922.
- Margellos, K. y Lygeros, J. (2011). Hamilton–Jacobi formulation for reach–avoid differential games. IEEE Transactions on Automatic Control, 56(8), 1849–1861.
- Margellos, K. y Lygeros, J. (2009). Air traffic management with target windows: An approach using reachability. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 145–150. Shanghai, China.
Moll, A.V., Casbeer, D., Garcia, E., Milutinovic, D., y Pachter, M. (2019). The multi–pursuer single–evader game. Journal of Intelligent & Robotic Systems, 96(2), 193–207. - Nath, S. y Ghose, D. (2022). A two–phase evasive strategy for a pursuit–evasion problem involving two non–holonomic agents with incomplete information. European Journal of Control, 68, 100677.
- Pachter, M. (2012). Isaacs’ two–on–one pursuit–evasion game. In D.M. Ramsey y J. Renault (eds.), Advances in Dynamic Games, volume 17 of Annals of the International Society of Dynamic Games, chapter 2, 27–57.
- Birkhäuser, Cham, Berlin Heidelberg. Pachter, M. y Getz, W.M. (1980). The geometry of the barrier in the game of two cars. Optimal Control Applications and Methods, 1(2), 103–118.
- Sun, Z., Sun, H., Li, P., y Zou, J. (2022). Cooperative strategy for pursuit–evasion problem with collision avoidance. Ocean Engineering, 266(Part 2), 112742.
- Tian, Z., Danino, M., Bar-Shalom, Y., y Milgrom, B. (2023). Missile threat detection and evasion maneuvers with countermeasures for a low–altitude aircraft. IEEE Transactions on Aerospace and Electronic Systems, 59(6), 7352–7362.
- Zhang, Z.X., Zhang, K., Xie, X.P., y Sun, J.Y. (2024). Fixed–time zero–sum pursuit–evasion game control of multi–satellite via adaptive dynamic programming. IEEE Transactions on Aerospace and Electronic Systems. DOI: 10.1109/TAES.2024.3351810.
- Zhou, Z., Ding, J., Huang, H., Takei, R., y Tomlin, C. (2018). Efficient path planning algorithms in reach–avoid problems. Automatica, 89, 28–36.