Cruz-Zavala, Emmanuel | Universidad de Guadalajara |
Moreno, Jaime A | Universidad Nacional Autónoma de México |
Loria, Antonio | Centre National de la Recherche Scientifique |
Arteaga, Marco A. | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2024.026
Resumen: In this paper, we propose an adaptive control scheme for achieving finite-time regulation in the simplest nonlinear mechanical system: a one degree of freedom Euler-Lagrange system. Our control approach consists of two components: a Proportional-Derivative (PD) nonlinear feedback and a finite-time estimation algorithm, which is based on a Dynamic Regressor Extension and Mixing (DREM) estimator. We emphasize that finite-time regulation of Euler-Lagrange systems using adaptive control has not been addressed in the literature. Although the control system under analysis is basic, it reveals important aspects of the finitetime convergence of the closed-loop system. The performance of the proposed controller is demonstrated through simulations.
¿Cómo citar?
Cruz Zavala, E., Moreno, J.A., Loria, A. & Arteaga, M.A. (2024). On the Adaptive Continuous Finite-Time Regulation of 1-DOF Mechanical Systems. Memorias del Congreso Nacional de Control Automático 2024, pp. 150-155. https://doi.org/10.58571/CNCA.AMCA.2024.026
Palabras clave
Finite-Time Control, Adaptive Control, DREM, Euler-Lagrange systems
Referencias
- Aranovskiy, S., Bobtsov, A., Ortega, R., and Pyrkin, A. (2017). Performance enhancement of parameter estimators via dynamic regressor extension and mixing. IEEE Trans. Automat. Contr., 62(7), 3546–3550.
- Arteaga, M.A. (2024). On the exact parameter estimation for robot manipulators without persistence of excitation. IEEE Trans. Automat. Contr., 69(1), 410–417. doi:10.1109/TAC.2023.3269359.
- Bacciotti, A. and Rosier, L. (2005). Lyapunov functions and stability in control theory. Springer-Verlag, New York, 2nd edition.
Bhat, S. and Bernstein, D. (2005). Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst., 17(2), 101–127. - Cai, M., Xiang, Z., and Guo, J. (2016). Adaptive finite-time control for uncertain nonlinear systems with application to mechanical systems. Nonlinear Dynamics, 84(2), 943–958.
- Cruz-Zavala, E., Nuño, E., and Moreno, J. (2020). Continuous finite-time regulation of Euler-Lagrange systems via energy shaping. Int. J. Control, 93(12), 2931–2940.
- Cruz-Zavala, E., Sanchez, T., Moreno, J.A., and Nuño, E. (2018). Strict Lyapunov functions for homogeneous finite-time second-order systems. In 2018 IEEE Conf. Decis. Control (CDC), 1530–1535. doi: 10.1109/CDC.2018.8619664.
- Hestenes, M.R. (1966). Calculus of variations and optimal control theory. John Wiley & Sons, New York.
- Hong, Y., Wang, J., and Cheng, D. (2006). Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Automat. Contr., 51(5), 858–862. doi:10.1109/TAC.2006.875006.
- Hong, Y., Jiang, Z.P., and Feng, G. (2010). Finite-time input-to-state stability and applications to finite-time control design. SIAM J. Control Optim., 48(7), 4395–4418. doi:10.1137/070712043.
- Huang, J., Wen, C., Wang, W., and Song, Y.D. (2015). Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems. Automatica, 51, 292–301.
- Kelly, R. (1993). Comments on ‘Adaptive PD controller for robot manipulators’. IEEE Trans. Robot. Autom., 9(1), 117–119.
- Kelly, R. (1997). PD control with desired gravity compensation of robotic manipulators: A review. Int. J. Robot. Res., 16(5), 660–672.
- Korotina, M., Aranovskiy, S., Ushirobira, R., and Vedyakov, A. (2020). On parameter tuning and convergence properties of the DREM procedure. In 2019 European Control Conference (ECC), 53–58.
- Loría, A., Kelly, R., and Teel, A.R. (2005). Uniform parametric convergence in the adaptive control of mechanical systems. Eur. J. Control, 11, 87–100.
- Ortega, R., Gromov, V., Nuño, E., Pyrkin, A., and Romero, J. (2021). Parameter estimation of nonlinearly parameterized regressions without over parameterization: Application to adaptive control. Automatica, 127, 109544.
- Ortega, R. and Spong, M.W. (1989). Adaptive motion control of rigid robots: a tutorial. Automatica, 25(6), 877–888.
- Ríos, H., Efimov, D., Polyakov, A., and Perruquetti, W. (2016). Homogeneous time-varying systems: Robustness analysis. IEEE Trans. Automat. Contr., 61(12), 4075–4080. doi:10.1109/TAC.2016.2540806.
- Rohrs, C., Valavani, L., Athans, M., and Stein, G. (1985). Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics. IEEE Trans. Automat. Contr., 30(9), 881–889.
- Romero, J., Ortega, R., and Bobtsov, A. (2021). Parameter estimation and adaptive control of Euler-Lagrange systems using the power balance equation parameterisation. Int. J. Control, 96(2), 475–487.
- Rueda-Escobedo, J. and Moreno, J. (2015). Non-linear gradient algorithm for parameter estimation. In 2015 54th IEEE Conf. Decis. Control (CDC), 4086–4091. doi:10.1109/CDC.2015.7402855.
- Sastry, S. and Bodson, M. (1989). Adaptive Control: Stability, Convergence, and Robustness. Prentice–Hall.
- Slotine, J.J.E. and Li, W. (1987). On the adaptive control of robot manipulators. Int. J. Robot. Res., 6(3), 49–59.
- Sun, Z.Y., Shao, Y., and Chen, C.C. (2019). Fast finitetime stability and its application in adaptive control of high-order nonlinear system. Automatica, 106, 339–348.
- Tomei, P. (1991). Adaptive PD controller for robot manipulators. IEEE Trans. Robot. Autom., 7(4), 565–570.
- Venkataraman, S. and Gulati, S. (1993). Terminal slider control of robot systems. J. Intell. Robot. Syst., 5, 31–55.
- Wang, J., Efimov, D., and Bobtsov, A. (2020). On robust parameter estimation in finite-time without persistence of excitation. IEEE Trans. Automat. Contr., 65(5), 1731–1738.
- Zimenko, K., Efimov, D., and Polyakov, A. (2019). On condition for output finite-time stability and adaptive finite-time control scheme. In 2019 IEEE 58th Conf. Decis. Control (CDC), 7099–7103.