Garcés-Ruiz, Alejandro | Universidad Tecnológica de Pereira |
Avila-Becerril, Sofia | Universidad Nacional Autónoma de México |
Espinosa-Perez, Gerardo | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2024.030
Resumen: This paper presents a Hamiltonian model of a direct current microgrid consisting of rectifiers connected in parallel in closed-loop with a Droop-type power-sharing algorithm. The main contribution is to demonstrate that a discretization using the backward Euler method preserves the microgrid’s Hamiltonian structure and passivity properties with a simple implementation of the method. The results are numerically evaluated by comparing the backward and forward Euler methods.
¿Cómo citar?
Garcés Ruiz, A., Avila Becerril, S. & Espinosa Perez, G. (2024). Discretization of Models for Electrical Microgrids Preserving Passivity Properties. Memorias del Congreso Nacional de Control Automático 2024, pp. 173-178. https://doi.org/10.58571/CNCA.AMCA.2024.030
Palabras clave
Microgrids, Hamiltonian Systems, discretization, passivity
Referencias
- Avila-Becerril, S., Espinosa-P´erez, G., and Machado, J.E. (2022). A hamiltonian control approach for electric microgrids with dynamic power flow solution. Automatica, 139, 110192. doi:https://doi.org/10.1016/j.automatica.2022.110192.
- Bezanson, J., Edelman, A., Karpinski, S., and Shah, V.B. (2017). Julia: A fresh approach to numerical computing. SIAM review, 59(1), 65–98. URL https://doi.org/10.1137/141000671
- Boyd, S. and Vandenberhe, L. (2004). Convex optimization. Cambridge university press.
Butcher, J.C. (2008). Numerical methods for ordinary differential equations. John Wiley and Sons. - Chapra, S.C., Canale, R.P., Ruiz, R.S.G., Mercado, V.H.I., Díaz, E.M., and Benites, G.E. (2011). Métodos numéricos para ingenieros, volume 5. McGraw-Hill New York, NY, USA.
- Eberlein, S. and Rudion, K. (2021). Small-signal stability modelling, sensitivity analysis and optimization of droop controlled inverters in lv microgrids. International Journal of Electrical Power Energy Systems, 125, 106404.
- Gao, F., Kang, R., Cao, J., and Yang, T. (2019). Primary and secondary control in dc microgrids: a review. Journal of Modern Power Systems and Clean Energy, 7(2), 227–242.
- Gao, F., Yu, J., and Rogers, D.J. (2022). A discretetime algorithm for real time energy management in dc microgrids. IEEE Transactions on Power Electronics, 38(3), 2896–2909.
- Gil-González, W.J., Garces, A., Fosso, O.B., and Escobar-Mejía, A. (2020). Passivity-based control of power systems considering hydro-turbine with surge tank. IEEE Transactions on Power Systems, 35(3), 2002– 2011. doi:10.1109/TPWRS.2019.2948360.
- Guerrero, J.M., Vasquez, J.C., Matas, J., De Vicuña, L.G., and Castilla, M. (2010). Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization. IEEE Transactions on industrial electronics, 58(1), 158–172.
- Lin, W. and Byrnes, C. (1994). Kyp lemma, state feedback and dynamic output feedback in discrete-time bilinear systems. Systems and Control Letters, 23(2), 127–136. doi:https://doi.org/10.1016/0167-6911(94) 90042-6.
- Loomis, L.H. and Sternberg, S. (2014). Advanced calculus. World scientific, Harvard University.
Macchelli, A. (2023). Control design for a class of discrete-time port-hamiltonian systems. IEEE Transactions on Automatic Control, 68(12), 8224–8231. doi:10.1109/TAC.2023.3292180. - Ortega, R., Romero, G., Borja, P., and Donaire, A. (2021). PID Passivity-Based Control of Nonlinear Systems with Applications. Wiley.
- Ortega, R. and García-Canseco, E. (2004). Interconnection and damping assignment passivity-based control: A survey. European Journal of Control, 10(5), 432–450. doi:https://doi.org/10.3166/ejc.10.432-450.
- Talasila, V., Clemente-Gallardo, J., and van der Schaft, A. (2004). Geometry and hamiltonian mechanics on discrete spaces. Journal of physics A: mathematical and general, 37(41), 9705.
- Yang, T., Sun, S., and Liu, G.P. (2022). Distributed discrete-time secondary cooperative control for ac microgrids with communication delays. IEEE Transactions on Industrial Electronics, 70(6), 5949–5959.