| Ángel Mauricio Rionda Tanda | Universidad de Guanajuato |
| Héctor Hernández Escoto | Universidad de Guanajuato |
| Salvador Hernández | Universidad de Guanajuato |
https://doi.org/10.58571/CNCA.AMCA.2025.076
Resumen: In this work, the convergence time of the Extremum Seeking Control applied to ensure the optimal performance of a distillation column is studied and diminished in such a way that it is comparable to the one of a linear PI controller. The distillation column is one of the trays in continuous operation that separates an ideal binary mixture. Firstly, a sensitive-type analysis of the convergence time with respect to the ESC tuning parameters is carried out, locating the values for which the convergence time is minimum; next, a variation of the ESC is applied, which consists of the addition of a decreasing function to initially speed up the ESC performance, and a saturation block is also added to constrain likely large changes in the control inputs. The control problem is one of regulation, for which, for validation purposes, the optimal conditions for the testing cases are determined by a conventional sensitivity analysis of the output with respect to the inputs. The testing runs show not only the effectiveness of the ESC but also that the modified ESC has a reduced convergence time compared to the typical ESC, and it is even comparable to that of a linear PI controller.

¿Cómo citar?
Rionda Tanda, A., Hernández Escoto, H. & Hernández, S. (2025). Convergence Time Decreasing of Extremum Seeking Control in a Distillation Column. Memorias del Congreso Nacional de Control Automático 2025, pp. 445-450. https://doi.org/10.58571/CNCA.AMCA.2025.076
Palabras clave
Extremum Seeking Control, Black Box Model, Regulatory Control, Distillation Column, Aspen Dynamics, Optimizing parameters, PI Controller.
Referencias
- Ariyur, K.B. and Krstic, M. (2003). Real-time Optimization by Extremum-seeking Control, Wiley-Interscience Edition, John Wiley & Sons, INC, 2003.
- Mustapha, D., Fatima, O., & Sabria, T. (2007). Distillation of a complex mixture. Part I: High pressure distillation column analysis: Modeling and simulation. Entropy, 9(2), 58–72.
- Sun, J., Cao, Y., Wang, Y., & Yang, L. (2023). Intelligent optimization design of distillation columns using surrogate models based on GA-BP. Processes, 11(8), 2386.
- Seader, J. D., Henley, E. J., & Roper, D. K. (2011). Separation process principles: Chemical and biochemical operations (3.ª ed.). Wiley.
- BOX, G.E.P y WILSON K.G. “On the experimental attainment of optimum conditions”. Journal of the Royal Statitistical Society. B13, 1-45. 1951
- Hernández-Escoto, H., Dewasme, L., & Vande Wouwer, A. (2022). Optimal operation of a distillation process through Extremum Seeking Control.
- Ixbalank Torres-Zúñiga, F., López-Caamal, F., Hernández-Escoto, H., & Alcaraz-González, V. (2021). Extremum seeking control and gradient estimation based on the Super-Twisting algorithm. Journal of Process Control, 101, 223–235.
- Angulo Guerrero, R. J., & Garcia Camacho, D. J. (2023). Optimización de procesos de producción mediante el uso de algoritmos genéticos. Revista Ingeniería, 7(18), 316
- Dewasme, L. and Vande Wouwer, A. (2020), Model-free extremum seeking control of bioprocesses: A review with a worked example, Processes, 8(10),1209.
- Guay, M. (2016). A perturbation-based proportional integral extremumseeking control approach, IEEE Transactions on Automatic Control, 61(11), 3370–3381.
- Dinesh Krishnamoorthy, Julian Straus, Sigurd Skogestad. Combining Self‑Optimizing Control and ExtremumSeeking Control – Applied to an Ammonia Reactor Case Study (AIChE Annual Meeting, 2017; publicado en Journal of Process Control, 2019)
- Wang, H., Wang, Z., Zhou, Q., Liang, J., Yin, Y., Su, W., & Wang, G. (2020). Optimization and sliding mode control of dividing-wall column. Industrial & Engineering Chemistry Research, 59(45), 20102–20111.
- Jacobsen, W.W. and Skogestad, S. (1994). Instability of distillation columns. AIChE Journal, 40(9), 1466-1478.Li, M., Wang, F., & Gao, F. (2001). PID-based sliding mode controller for nonlinear processes. Industrial & Engineering Chemistry Research, 40(12), 2660–2667.
- Jazayeri-Rad, H. (2004). The nonlinear model-predictive control of a chemical plant using multiple neural networks. Neural Computing & Applications, 13(1–2), 2–15.
- Qian, X., Lin, K.-H., Jia, S., & Biegler, L. T. (2023). Nonlinear model predictive control for dividing wall columns. AIChE Journal, 69(6), e18062.
