| D. A. Martínez-Velasco | Cinvestav |
| H. Rodríguez-Cortés | Cinvestav |
| M. Velasco-Villa | Cinvestav |
https://doi.org/10.58571/CNCA.AMCA.2025.047
Resumen: This work shows a control design methodology for a class of time-variant nonlinear systems. This proposal uses a kinematic model of the differential robot, and a reference model that describes the desired trajectory as a function of time. Based on the linearization of the system in the error, a linear control is developed, capable of performing accurate tracking of the desired trajectory, as well as the convergence of the position and orientation errors to zero, without resorting to complex models or computationally expensive control strategies.

¿Cómo citar?
Martínez-Velasco, D., Rodríguez-Cortés, H. & Velasco-Villa, M. (2025). A linear controller for a class of nonlinear time variant systems, the unicycle case. Memorias del Congreso Nacional de Control Automático 2025, pp. 274-279. https://doi.org/10.58571/CNCA.AMCA.2025.047
Palabras clave
Linearization, Controlability, Disturbances.
Referencias
- Alshamali, S. (2020). Adaptive backstepping control for a unicycle-type mobile robot. Journal of Engineering Research, 8(2).
- Cui, M., Zhou, L., Cheng, Y., and Liu, W. (2025). Design of observer-controller combination for nonholonomic mobile robots. IEEE Access, PP, 1–1. doi:10.1109/ACCESS.2025.3551081.
- De Luca, A., Oriolo, G., and Vendittelli, M. (2001). Control of Wheeled Mobile Robots: An Experimental Overview, 181–226. Springer Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/3-540-45000-9 8. URL https://doi.org/10.1007/3-540-45000-9_8.
- Dumitrascu, B., Filipescu, A., and Minzu, V. (2011). Backstepping control of wheeled mobile robots. In 15th International conference on system theory, control and computing, 1–6. IEEE.
- Goodwin, G.C. and Sin, K.S. (2014). Adaptive filtering prediction and control. Courier Corporation.
- Khalil, H.K. (2002). Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ, USA, 3 edition. See Chapter 9.1, 469–475.
Ogata, K. (2003). Ingeniería de control moderna. Pearson educación.
Petrov, P. and Kralov, I. (2024). Exponential trajectory tracking control of nonholonomic wheeled mobile robots. Mathematics, 13(1), 1.
