| M. Ramíırez–Barrios | Instituto Politécnico Nacional |
| J.D. Avilés | Universidad Autónoma de Baja California |
| M. Mera | Instituto Politécnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2025.007
Resumen: The administration of general anesthesia involves various inherent risks for patients, which has driven the development of automation aimed at ensuring precise drug delivery. Automation consists of regulating the Depth of Hypnosis (DoH), considering the infusion of drugs as control variables. This paper presents a fault detection strategy for an automated drug delivery system that regulates the DoH. The strategy considers the patient’s pharmacokinetic and pharmacodynamic linear models under the action of a model predictive control for DoH regulation. The approach employs the design of an interval observer that exploits the cooperativity property of the estimation error to enhance fault sensitivity and robustness against uncertainties. The proposed algorithm’s performance is evaluated through in silico simulations under different fault scenarios related to the blockage of the infusion pumps. The results demonstrate the effectiveness of the strategy in detecting faults in the actuators responsible for administering propofol and remifentanil.

¿Cómo citar?
Ramíırez–Barrios, M., Avilés, J. & Mera, M. (2025). Fault Detection in the Automatic Co-administration of Two Drugs for General Anesthesia. Memorias del Congreso Nacional de Control Automático 2025, pp. 38-43. https://doi.org/10.58571/CNCA.AMCA.2025.007
Palabras clave
Fault Detection, Interval Observers, Cooperative-Positive Systems, Anesthesia.
Referencias
- Avilés, J.D. y Moreno, J.A. (2014). Preserving order observers for nonlinear systems. International Journal of Robust and Nonlinear Control, 24(16), 2153–2178.
- Dua, P., Efstratios, y Pistikopoulos, N. (2005). Modelling and control of drug delivery systems. Computers & Chemical Engineering, 29(11), 2290–2296. Selected Papers Presented at the Symposium on Modeling of Complex Processes.
Efimov, D., Perruquetti, W., Ra¨ıssi, T., y Zolghadri, A. (2013). On interval observer design for timeinvariant discrete-time systems. In 2013 European Control Conference (ECC), 2651–2656. IEEE. doi: 10.23919/ECC.2013.6669108. - Falcón, F., Ramírez-Barrios, M., Sandre, O., Mera, M., y Ordaz, P. (2022). Model predictive control with exponential cost function to regulate the propofol infusion rate. In 2022 XXIV Robotics Mexican Congress (COMRob), 89–94.
- Hautus, M.L. (1983). Strong detectability and observers. Linear Algebra and its applications, 50, 353–368.
- Kern, S.E., Xie, G., White, J.L., y Egan, T.D. (2004). A Response Surface Analysis of Propofol–Remifentanil Pharmacodynamic Interaction in Volunteers. Anesthesiology, 100(6), 1373–1381.
- Larson, E.R., Nuttall, G.A., Ogren, B.D., Severson, D.D., Wood, S.A., Torsher, L.C., Oliver, W.C., y Marienau, M.E.S. (2007). A prospective study on anesthesia machine fault identification. Anesthesia & Analgesia, 104(1), 154–156.
- Lázaro, J., Ramírez-Barrios, M., Mera, M., y Mora, R. (2022). Performance of classical pid tuning in the automation anesthesia delivery. In H.A. Moreno, I.G. Carrera, R.A. Ramírez-Mendoza, J. Baca, y I.A. Banfield (eds.), Advances in Automation and Robotics Research: Proceedings of the 3rd Latin American Congress on Automation and Robotics, Monterrey, Mexico 2021, 54– 62. Springer.
- Marsh, B., White, M., Morton, N., y Kenny, G. (1991). Pharmacokinetic model driven infusion of propofol in children. BJA: British Journal of Anaesthesia, 67(1), 41–48.
- Merigo, L., Padula, F., Latronico, N., Paltenghi, M., y Visioli, A. (2019). Optimized pid control of propofol and remifentanil coadministration for general anesthesia. Communications in Nonlinear Science and Numerical Simulation, 72, 194–212.
- Na,scu, I., Krieger, A., Ionescu, C.M., y Pistikopoulos, E.N. (2015). Advanced model-based control studies for the induction and maintenance of intravenous anaesthesia. IEEE Transactions on Biomedical Engineering, 62(3), 832–841.
- Paw lowski, A., Schiavo, M., Latronico, N., Paltenghi, M., y Visioli, A. (2022). Model predictive control using miso approach for drug co-administration in anesthesia. Journal of Process Control, 117, 98–111.
- Ramírez-Barrios, M., Gutiérrez, C.P., Sandre, O., Mera, M., y Ordaz, P. (2023). Automation for regulation of deep hypnosis by delivery of propofol and remifentanil. In 2023 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), volume 7, 1–6.
- Sandre-Hernández, O., Ramírez-Barrios, M., Ordaz, P., y Mera, M. (2023). Multivariable discrete mpc with exponential cost function on the automation of the anesthesia process. International Journal of Robust and Nonlinear Control, 1422–1436.
- Struys, M.M., De Smet, T., Glen, J.I.B., Vereecke, H.E., Absalom, A.R., y Schnider, T.W. (2016). The history of target-controlled infusion. Anesthesia & Analgesia, 122(1), 56–69.
- Struys, M.M., De Smet, T., Versichelen, L.F., Van de Velde, S., Van den Broecke, R., y Mortier, E.P. (2001). Comparison of closed-loop controlled administration of propofol using bispectral index as the controlled variable versus “standard practice” controlled administration. The Journal of the American Society of Anesthesiologists, 95(1), 6–17.
