| Víctor Arturo Maldonado-Ruelas | Universidad Politécnica de Aguascalientes |
| Raúl Arturo Ortiz-Medina | Universidad Politécnica de Aguascalientes |
https://doi.org/10.58571/CNCA.AMCA.2025.049
Resumen: Mechanical faults in electrical machines, particularly in industrial washing machines, are a relevant case study, particularly due to the high costs of corrective maintenance performed in the event of a failure. Therefore, the present work aims to detect incipient (small in magnitude) mechanical eccentricity failures by means of a frequency analysis of motor current signals through a programmable logic controller (PLC). Noninvasive signal measurements were performed using Hall effect sensors and signal conditioning for a SIMATIC S7-1200 PLC, obtaining a database during the process of a washing cycle. For data analysis, the Discrete Fourier Transform (FDT) of the Park Instantaneous Space Vector (ISP) was used. For the different eccentricity failures, varying loads in the industrial washing machine basket were considered. The algorithm programmed in the PLC allowed the fault to be detected during a wash cycle, at different operating points of the industrial washing machine and under normal operating environmental conditions; that is, with the noise and vibration of other industrial washing machines. The scope of this work, therefore, allows for early “online" fault detection, avoiding corrective maintenance on industrial washing machines and the generation of other types of mechanical failures, such as bearing failures.

¿Cómo citar?
Maldonado-Ruelas, V. & Ortiz-Medina, R. (2025). Eccentricity Fault Detection in Industrial Washing Machine by Spectral Analysis. Memorias del Congreso Nacional de Control Automático 2025, pp. 286-290. https://doi.org/10.58571/CNCA.AMCA.2025.049
Palabras clave
Fault Detection, Electrical Machines, Frequency Analysis; Programmable Automaton, Washing Machine.
Referencias
- Stamminger, R., Bues, A., Alfieri, F. & Cordella, M. (2020). Durability of washing machines under real life conditions: Definition and application of a testing procedure. Journal of cleaner production, 261. DOI: 10.1016/j.jclepro.2020.121222.
- Mazzoletti, M. Donolo, P. D., Pezzani, C. M., Oliveira, M. O., Bossio, G. R., & De Angelo, C. H. (2021). Stator faults detection on induction motors using harmonic sequence current components analysis. IEEE Latin America Transactions, 19(5). 726-734. DOI: 10.1109/TLA.2021.9448286.
- Ugwiri, M., Carratú, M., Pietrosanto, A., Paciello, V., & Lay-Ekuakille, A. (2020). Vibrations measurement and current signatures for fault detection in asynchronous motor. IEEE International Instrumentation and Measurement Technology Conference, 1-6. DOI: 10.1109/I2MTC43012.2020.9128433.
- Meira, M., Bossio, G., Bossio, J., Verucchi, C. & Ruschetti, C. (2022). Broken rotor bar detection using the full spectrum applied to the induction motor starting currents. IEEE Biennial Congress of Argentina (ARGENCON), DOI: 10.1109/ARGENCON55245.2022.9939959.
- Liu, M. K., Tran, M. Q. & Weng, P. Y. (2019). Fusion of vibration and current signatures for the fault diagnosis of induction machines. Shock and Vibration, DOI: 10.1155/2019/7176482.
- Hmida, M. A., & Braham, A. (2020). Fault detection of VFDfed induction motor under transient conditions using harmonic wavelet transform. EEE Transactions on Instrumentation and Measurement, 69(10). 8207-8215. DOI: 10.1109/TIM.2020.2993107.
- Sameh, M., Tarek, A. & Yassine, K. (2020). Bearing and rotor faults detection and diagnosis of induction motors using statistical neural networks, 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, 77-81. DOI: 10.1109/STA50679.2020.9329334.
- García-Calva, T. A., Morinigo-Sotelo, D. & Troncoso, R. (2022). Fundamental frequency normalization for reliable detection of rotor and load defects in vsd-fed induction motors. IEEE Transactions on Energy Conversion, 37(2). 1467-1474, DOI: 10.1109/TEC.2021.3124803.
- Helmi, H. & Forouzantabar, A. (2019). Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS. IET Electric Power Applications, 13(5). 669-669, 2019. DOI: 10.1049/ietepa. 2018.5274.
- Ribeiro, D. A., Ferreira, D. D., Pereira, D. A., Junior, R. A. & Nunes, R. D. (2019). Mechanical fault detection in electric motors measured by a digital signal processing device in an optical mouse. Measurement, 138. 350-355. DOI: 10.1016/j.measurement.2019.02.050.
- Yoo, Y. J. (2019). Fault detection of induction motor using fast Fourier transform with feature selection via principal component analysis. International Journal of Precision Engineering and Manufacturing, 20(9). 1543-1552. DOI: 10.1007/s12541-019-00176-z.
- Hasan, M. J., Islam, M. M. & Kim, J. M. (2019). Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions. Measurement, 138. 620-631. DOI: 10.1016/j.measurement.2019.02.075.
- Delgado-Arredondo, P. A., Morinigo-Sotelo, D., Osornio-Rios, R. A., Avina-Cervantes, J. G., Rostro-Gonzalez, H. & Romero-Troncoso, R. (2017). Methodology for fault detection in induction motors via sound and vibration signals. Mechanical Systems and Signal Processing, 83. 568-589. DOI; 10.1016/j.ymssp.2016.06.032.
- Wenzel da Silva, F. W. & Cavalca, K. L. (2019). Vibration signatures of a rotor-coupling-bearing system under angular misalignment. Mechanism and Machine Theory, 133. 559-583. DOI: 10.1016/j.mechmachtheory.2018.12.014.
- Soto-Ocampo, C. R., Mera, J. M. Cano-Moreno, J. D. & Garcia-Bernardo, J. L. (2020). Low-cost, high-frequency, data acquisition system for condition monitoring of rotating machinery through vibration analysis-case study. Sensors, 20(12). 3493. DOI: 10.3390/s20123493.
- Gundewar, S. K. & Kane, P. V. (2021). Condition monitoring and fault diagnosis of induction motor. Journal of Vibration Engineering & Technologies, 9. 643-674. DOI: 10.1007/s42417-020-00253-y.
- Villalobos-Piña, F. J. (2013). Análisis y Diseño de un Esquema de Diagnóstico de Fallas en Motores de Inducción. Tesis Doctoral UASLP.
