| J.L. Orozco-Mora | Tecnológico Nacional de México |
| J. Ruiz-León | Cinvestav |
| E. Ruiz-Beltrán | Tecnológico Nacional de México |
https://doi.org/10.58571/CNCA.AMCA.2025.011
Resumen: In this work, the Relative Gain Array (RGA) is employed as a measure of input-output coupling in the operation of a two-degree-of-freedom (2DOF) helicopter platform. High levels of interaction between control channels typically affect the performance of multivariable control systems, especially when decentralized controllers are used. To address this, we propose a methodology that systematically modifies the RGA matrix to achieve a more favorable configuration, including decoupling, and improved closedloop performance. The approach involves analyzing the system’s steady-state gain matrix and applying a transformation that shifts the RGA values toward a desired target structure. Simulation results demonstrate that the proposed modification produces a significant change in system response, reducing or increasing coupling effects as required. These findings suggest a promising direction for the design of RGA-based controllers in practical multivariable systems, such as aerial platforms.

¿Cómo citar?
Orozco-Mora, J., Ruiz-León, J. & Ruiz-Beltrán, E. (2025). Arbitrary Change of the Relative Gain Array: Application to a Helicopter. Memorias del Congreso Nacional de Control Automático 2025, pp. 62-67. https://doi.org/10.58571/CNCA.AMCA.2025.011
Palabras clave
Relative Gain Array, Multivariable control, Coupling, input-output interaction.
Referencias
- Albertos, P. y Antonio, S. (2006) Multivariable control systems: an engineering approach. Springer Science & Business Media.
- Bristol, E.H. (1965), “On a New Measure of Interaction for Multivariable Process Control; Foxboro Company” Foxboro, Mass.
- Chen, H. L M. (1983). Lectures notes in control and information sciences; Edited by A.V. Balakrishnan and M. Thomas. Germany.
- Garrido, J. et al. (2024) “Design of multivariable PID control using iterative linear programming and decoupling”, Electronics, 13(4), p. 698. Available at: https://doi.org/10.3390/electronics13040698.
- Martello, R.H. et al. (2024) “Enhancing autoencoder-based machine learning through the use of process control gain and relative gain arrays as cost functions”, Industrial & engineering chemistry research, 63(39), pp. 16814–16822. Available at: https://doi.org/10.1021/acs.iecr.4c00343.
- Quanser, Q. (2011). 2-DOF Helicopter-Laboratory Manual. Markham, ON, Canada: Quanser Inc.
- Rodrigues, V.H.P. and Oliveira, T.R. (2022) “Multivariable variable-gain super-twisting control via output feedback for systems with arbitrary relative degrees," International journal of adaptive control and signal processing, 36(2), pp. 230–250. Available at: https://doi.org/10.1002/acs.3365.
- Shinskey, F.G. (1996); Sistemas de control de procesos, McGraw-Hill. México.
- Wu, B. et al. (2022) “Adaptive neural control of a 2DOF helicopter with input saturation and time-varying output constraint”, Actuators, 11(11), p. 336. Available at: https://doi.org/10.3390/act11110336.
- Zheng, S. et al. (2024). “Study on Multivariable Dynamic Matrix Control for a Novel Solar Hybrid STIGT System”. Energies, 17(6), p. 1425. Available at: https://doi.org/10.3390/en17061425
- Zuñiga, M.A. et al. (2021) “Passive fault-tolerant control of a 2-DOF robotic helicopter,” Information (Basel), 12(11), p. 445. Available at: https://doi.org/10.3390/info12110445.
