| Manuel Mera | Instituto Politécnico Nacional |
| Héctor Ríos | Tecnológico Nacional de México |
| Rosane Ushirobira | Université de Lille |
| Denis Efimov | ITMO University |
https://doi.org/10.58571/CNCA.AMCA.2025.012
Resumen: Due to the nonholonomic nature of the Unicycle Mobile Robot (UMR) kinematics, the regulation and tracking problems are typically addressed separately, often requiring a unifying time–varying or switched control scheme to handle both tasks simultaneously. In this result, we introduce a time–invariant controller design capable of solving simultaneously the tracking and regulation problems, for the UMR, ensuring the convergence of the error vector to the origin in a finite time. The controller design is based on the unit vector control approach and a transformation to the Heisenberg system, which is an equivalent diffeomorphic system to the kinematics of the UMR.

¿Cómo citar?
Mera, M., Ríos, H., Ushirobira, R. & Efimov, D. (2025). A New Finite–Time Controller Design for Simultaneous Tracking And Regulation of Unicycle Mobile Robots. Memorias del Congreso Nacional de Control Automático 2025, pp. 68-73. https://doi.org/10.58571/CNCA.AMCA.2025.012
Palabras clave
Heisenberg System, Non–holonomic System, Nonlinear Control.
Referencias
- Bloch, A.M. (2003). Nonholonomic mechanics. In Nonholonomic mechanics and control, 207–276. Springer.
- Brockett, R.W. (1983). Asymptotic stability and feedback stabilization. In Differential Geometric Control Theory, 181–191. Birkhauser.
- Duleba, I., Khefifi, W., y Karcz-Duleba, I. (2012). Layer, Lie algebraic method of motion planning for nonholonomic systems. Journal of the Franklin Institute, 349(1), 201–215.
- Ferrara, A., Incremona, G.P., y Vecchio, C. (2023). Adaptive multiple-surface sliding mode control of nonholonomic systems with matched and unmatched uncertainties. IEEE Transactions on Automatic Control.
- Gao, F., Huang, J., Shi, X., y Zhu, X. (2020). Nonlinear mapping-based fixed-time stabilization of uncertain nonholonomic systems with time-varying state constraints. Journal of the Franklin Institute, 357(11), 6653–6670.
- Khaledyan, M., Liu, T., Fernandez-Kim, V., y de Queiroz, M. (2015). Flocking and target interception control for formations of nonholonomic kinematic agents. IEEE Transactions on Control Systems Technology, 28(4),1603–1610.
- Marchand, N. y Alamir, M. (2003). Discontinuous exponential stabilization of chained form systems. Automatica, 39(2), 343–348.
- Mera, M., R´ıos, H., y Mart´ınez, E. (2020). A sliding-mode based controller for trajectory tracking of perturbed unicycle mobile robots. Control Engineering Practice, 102, 104548.
- Mera, M. y R´ıos, H. (2024). Semi-global and robust finite-time regulation of the Heisenberg system. IEEE Transactions on Automatic Control, 1–8. doi: 10.1109/TAC.2024.3393228.
- Murray, R.M., Li, Z., y Sastry, S.S. (1994). A mathematical introduction to robotic manipulation. CRC press.
- Ríos, H., Mera, M., y Polyakov, A. (2024). Perturbed unicycle mobile robots: A second–order sliding–mode trajectory tracking control. IEEE Transactions on Industrial Electronics, 71(3), 2864–2872.
- Rocha, E., Castaños, F., y Moreno, J.A. (2022). Robust finite-time stabilisation of an arbitrary-order nonholonomic system in chained form. Automatica, 135, 109956.
- Rochel, P., Ríos, H., Mera, M., y Dzul, A. (2022). Trajectory tracking for uncertain unicycle mobile robots: A super-twisting approach. Control Engineering Practice, 122, 105078.
- Sánchez-Torres, J.D., Defoort, M., y Mu˜noz-V´azquez, A.J. (2020). Predefined-time stabilisation of a class of nonholonomic systems. International Journal of Control, 93(12), 2941–2948.
- Singhal, K., Kumar, V., y Rana, K. (2022). Robust trajectory tracking control of non-holonomic wheeled mobile robots using an adaptive fractional order parallel fuzzy PID controller. Journal of the Franklin Institute, 359(9), 4160–4215.
- Vershik, A. y Gershkovich, V.Y. (1988). Nonholonomic problems and the theory of distributions. Acta Applicandae Mathematica, 12(2), 181–209.
- Zhang, H., Sun, J., y Wang, Z. (2022). Game-theoretical persistent distributed control of nonholonomic robots without global position measurements subject to unknown slippage constraints. IEEE/CAA Journal of Automatica Sinica, 9(2), 354–364.
- Zhang, M. y Liu, H. (2014). Game-theoretical persistent tracking of a moving target using a unicycle-type mobile vehicle. IEEE Transactions on Industrial Electronics, 61(11), 6222–6233.
- Zhou, Y., R´ıos, H., Mera, M., Polyakov, A., Zheng, G., y Dzul, A. (2024). Homogeneity–based control strategy for trajectory tracking in perturbed unicycle mobile robots. IEEE Transactions on Control Systems Technology, 32(1), 274–281.
- Zhu, W., Yu, X., Li, S., y Du, H. (2022). Finite-time discontinuous control of nonholonomic chained-form systems. IEEE Transactions on Circuits and Systems II: Express Briefs.
