| Eng. Sierra Ruiz Ricardo Angel | Instituto Politécnico Nacional |
| Dr. Escobedo Alva Jonathan Omega | Instituto Politécnico Nacional |
| Dr. Hernández Martínez Eusebio Eduardo | Instituto Politécnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2025.039
Resumen: The testing of control algorithms for fixed-wing aircraft is particularly challenging due to the inherent complexity of their dynamics and the risks associated with flight testing. This paper presents the design and implementation of a real-time Hardware-in-the-Loop (HIL) simulation system that provides a safe and reliable environment for testing embedded controllers. The proposed HIL system integrates: (i) a real-time dynamic model, (ii) a DSPbased processor programmed in C, (iii) a Gough–Stewart platform that physically replicates the aircraft attitude, and (iv) communication with MATLAB/Simulink. Experimental and simulation results are analyzed and compared, confirming the system’s effectiveness as a reproducible environment for the development and testing of advanced control algorithms.

¿Cómo citar?
Sierra Ruiz, R., Escobedo Alva, J. & Hernández Martínez, E. (2025). Design, Construction and Implementation of a Hardware-in-the-loop System for Testing Control Algorithms in Fixed Wing Aircraft. Memorias del Congreso Nacional de Control Automático 2025, pp. 227-232. https://doi.org/10.58571/CNCA.AMCA.2025.039
Palabras clave
Hardware-in-the-Loop system, Digital Signal Processor, Control Algorithms, Fixed-Wing Aircraft, Real-Time Simulation, Sensors and Actuators..
Referencias
- Beard, R.W. and McLain, T.W. (2012). Small Unmanned Aircraft: Theory and Practice. Princeton University Press.
- Chen, M., Li, Q., and Zhang, Y. (2022). Model predictive control of fixed-wing uavs using a real-time hil simulation framework. IEEE Transactions on Aerospace and Electronic Systems, 58(5), 3920–3932. doi:10.1109/TAES.2022.3149346.
- Corporation, E. (2023). SDC500 Quartz MEMS Tactical Grade Inertial Measurement Unit (IMU). URL https://www.emcore.com.
- FM(AG08) (1995). Robust Flight Control Design Challenge Problem Formulation and Manual: Research Civil Aircraft Model (RCAM). GARTEUR. Instruments, T. (2019). TMS320x2833x, 2823x DSP Reference Guide. URL https://www.ti.com/lit/ug/sprufb0/sprufb0.pdf. No. SPRUF35C.
- Khalil, H.K. (2002). Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ, 3rd edition.
- Lu, W. (2024). Hardware-in-the-loop simulation test platform for uav flight control system. International Journal of Modeling, Simulation and Scientific Computing, 15, 2441018:1–2441018:16. doi:
10.1142/s1793962324410186. - McLean, D. (1990). Automatic Flight Control Systems. Prentice Hall International, UK.
- Ogata, K. (2010). Ingenier´ıa de Control Moderna. PEARSON EDUCACI ´ON S.A., Madrid.
- Onik Technologies (2025). Onik technologies – soluciones tecnológicas integrales. URL https://www.onik.com.mx/.
- Peñaa García, R., V.S.R.D.G.D.A.C.E.A.J.O. (2024). Physics-based aircraft dynamics identification using genetic algorithms. Aerospace, 11(2), 142. doi:10.3390/aerospace11020142. URL https://doi.org/10.3390/aerospace11020142.
- Rodríguez, C. and Pérez, E. (2020). Implementation of a kalman filter-based navigation system using hardware-in-the-loop for uavs. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 580–586. IEEE. doi: 10.1109/ICUAS48674.2020.9213941.
- Volz Servos GmbH & Co. KG (2020). Da 15-n-ht. https://www.volz-servos.com. Página consultada el 14 de junio de 2025.
